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Abstract

A new three dimensional approach to the chaos game representation of protein

sequences is explored in this thesis. The basics of DNA, the synthesis of proteins

from DNA, protein structure and functionality and sequence alignment techniques

are presented. The mathematical background needed for understanding the chaos

game representation and fractal analysis are briefly discussed.

An account of the existing literature on the chaos game representation of DNA se-

quences and a detailed account of the chaos game representation of protein sequences

in two dimensions with its advantages and limitations are presented. We explore

a new three dimensional approach to the chaos game representation of protein se-

quences (3D-CGR) and study its ability a) to determine protein sequence similarity

and differences, b) to study the effect of dinucleotide biases at amino acid level on the

3D-CGR derived protein homology, and c) to identify sequence similarity based on

shuffled motifs that could be used for studying protein evolution due to exon shuffling.

Keywords: Chaos game, dinucleotide bias, protein homology, motifs, exon shuffling,

fractal
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Chapter 1

Introduction

Protein sequence analysis is the key tool for understanding the evolution of proteins,

sequence classification and for identifying conserved (they remain same across all

species) positions crucial for the function and structure of proteins. This thesis is

intended to study the protein sequence similarity using a holistic approach differing

from the traditional sequence alignment one which is based on subsequences. The tool

used for studying the sequence as a whole is known as Chaos Game Representation

(CGR).

Jeffrey in 1990 [16] introduced the new tool CGR to visually represent DNA se-

quences. This new tool stimulated interest among researchers and CGR has since

been used to explore the primary sequence organization of DNA and proteins. Al-

though research on CGR has been widely explored, it has been limited to a two

dimension representation. This thesis goes a step further to represent the CGR in

three dimensions and to understand its potential as a tool in analysing protein se-

quence similarity.

Following the introduction, Chapter 2 gives the basics of molecular biology: The

basic notions of DNA and protein sequences, the synthesis of protein from DNA and
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the representation of sequence/species relatedness through phylogenetic trees. It also

looks into bioinformatic techniques such as sequence alignment and multiple sequence

alignment with CLUSTALW, needed for the understanding of the thesis.

Chapter 3 looks into the mathematics behind the chaos game representation. This

chapter explains what the chaos game is, how it could reveal the underlying patterns

of any sequence. Also, this chapter gives a brief introduction into the mathematics

of generating fractals.

In Chapter 4, the usefulness of the CGR explored in the past is explained. The

literature on the CGR is grouped into two sections, one on DNA sequences and the

other on protein sequences. Since the emphasis of the thesis is on protein sequences,

a detailed analysis of all the previous work of the CGR of protein has been provided.

Chapter 5 deals with the new three dimensional approach to the CGR and results

of the analysis of protein sequences using 3D-CGR. In the beginning, the objectives

of the new approach are presented: to detect protein homology using 3D-CGR, to

understand the impact of dinucleotide bias at the amino acid level on the 3D-CGR

derived protein homology and to study the sequence relatedness to detect shuffled

motifs. Following this, a description of the geometric solid icosahedron used for play-

ing the chaos game, the method of representing amino acids on the icosahedron, and

the chaos game in three dimensions are explained. Also, various distance measures

used in the thesis and the spatial subdivision method used for determining the fractal

dimension are explained in this chapter.

Next, the experimental objectives of the thesis are discussed. They are: (i) the

validation of the phylogenetic trees obtained using 3D-CGR for detecting sequence

relatedness, (ii) detection of the impact of dinucleotide bias at the amino acid level
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on the 3D-CGR derived protein homology, (ii) comparison of the trees generated by

the 3D-CGR and CLUSTALW for sequence relatedness and shuffled motif detection,

(iv) comparison of the effect of using various distance measures on the phylogenetic

trees and (v) study the sequence relatedness using fractal patterns.

Following this, the methodologies used for performing the experiments are pre-

sented in detail. Our experiments reveal that the 3D-CGR can distinguish protein

families and species relatedness within the families of the sequences. The 3D-CGR

can detect shuffled motifs that cannot be detected by CLUSTALW. The detection of

shuffled motifs by 3D-CGR could be a useful tool in studying protein evolution due

to exon shuffling. Also, the significant difference in branch length between closely

related sequences on comparison with CLUSTALW indicate that 3D-CGR could be

used for measuring the amount of divergence between sequences within a family. The

impact of dinucleotide bias at the amino acid level was seen in the branch length

between some of the closely related sequences and in the branch order of the families.

Finally, the sequence relatedness assessed using fractal curves and its limitation in

studying protein homology is explained.

Lastly, Chapter 6 concludes the thesis by briefly presenting the major concepts

discussed in each chapter, the novel outcome of the new approach and few words on

the future work using 3D-CGR.
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Chapter 2

DNA and protein sequences

2.1 DNA

Deoxyribonucleic acid (DNA) stores the genetic information that determines all

activities of every living organism. The genetic information stored in DNA is passed

from one generation to the next. DNA is made up of four nucleotides: guanine,

adenine, thymine and cytosine, often referred as G,A,T,C. Nucleotides are organic

structures made up of three subunits: phosphate, deoxyribose sugar and a nitrogenous

base. The four nucleotides G,A,T and C have the same phosphate and sugar group

but differ in their nitrogenous bases (fig 2.1).

2.1.1 Structure

Nucleotides are linked to each other by the phosphate group of one nucleotide with

the deoxyribose sugar of another nucleotide forming a strand. The hydroxyl groups

on the 5’(5th carbon)- and 3’(3rd carbon) of deoxyribose sugar link to the phosphate

groups to form the DNA backbone. DNA is a double stranded molecule with the

two strands in anti-parallel directions. The 5’ end of one strand corresponds to the
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Figure 2.1: DNA; A, T, G, C - nucleotides; Anti-parallel strands (5’ to 3’ and 3’ to
5’) bonded by base pairs A-T and G-C;

3’ end of the complementary strand and vice versa [17]. The strands are hydrogen

bonded together by the base pairs A-T and G-C, the nucleotide A in one strand is

hydrogen bonded with nucleotide T in the other strand and similarly nucleotide C

in one strand is hydrogen bonded with nucleotide G on the other. For example, if

one strand is 5’-ACTG-3’ then the other strand is 3’-TGAC-5’. These strands twist

together to form a double helical structure.

2.1.2 Genetic code

A strand of DNA is composed of coding and non-coding regions. A coding region

refers to part of a DNA strand that contains the genetic information necessary for

producing the amino acid chains of proteins responsible for performing many cellular

functions. The non-coding regions on the other hand do not participate in amino

acid chain formation. The process of generating proteins from DNA is know as gene

expression and this process involves two stages, transcription and translation (fig

2.2).

In transcription, the nucleotide sequence that ultimately encodes a protein is used

as a template to code for RNA (ribonucleic acid), known as mRNA (messenger RNA).

RNA molecules are similar to DNA except the deoxyribose sugar in DNA is replaced

by ribose in RNA, the base Thymine (T) in DNA is replaced by the base Uracil (U)
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5’   T   A   C   T   T   G   C   A   A   A  T   C   3’

3’   A   T   G   A   A  C   G   T   T   T   A   G   5’

DNA Template

Transcription

Translation

Encoded Amino acid

tRNA

mRNA

Start Codon Stop Codon

 A  U  G

M

A  A  C

N

G  U   U

V

U  A  G

Y

5’3’

Figure 2.2: Transcription and translation

in RNA and RNA is a single stranded structure. The process by which mRNA codes

for protein is translation. The translation process is performed by a special type of

RNA called tRNA(transfer RNA) that deciphers triplet nucleotide code of mRNA to

specific amino acids. These triplet nucleotides are referred as codons. The relationship

between codon and amino acid is referred as Genetic code (fig 2.3). Since DNA is

composed of four nucleotides, there are 43=64 possible codons. The beginning of

translation is signaled by a special codon called start codon. There are three codons

that do not encode any amino acid but instead signal the end of translation, they are

called Stop Codons. Since there are only twenty amino acids that make up proteins,

more than one codon may refer to a particular amino acid.

2.2 Proteins

Proteins are long chain molecules built from twenty amino acids encoded by Codons.

The twenty amino acids are Alanine(A), Arginine(R), Asparagine(N), Aspartic acid(D),

Cysteine(C), Glutamic acid(E), Glutamine(Q), Glycine(G), Histidine(H), Isoleucine(I),

Leucine(L), Lysine(K), Methionine(M),Phenylalanine(F), Proline(P), Serine(S), Thre-
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UUU

UUC

UUA

UUG

CUU

CUC

CUA

CUG

AUU

AUC

AUA

AUG

GUU

GUC

GUA

GUG

UCU

UCC

UCA

UCG

CCU

CCC

CCA

CCG

ACU

ACC

ACA

ACG

GCU

GCC

GCA

GCG

UAU

UAC

UAA

UAG

CAU

CAC

CAA

CAG

AAU

AAC

AAA

AAG

GAU

GAC

GAA

GAG

UGU

UGC

UGA

UGG

CGU

CGC

CGA

CGG

AGU

AGC

AGA

AGG

GGU

GGC

GGA

GGG

Phe (F)

Leu(L)

Leu(L)

Ile(I)

Met(M)

Val(V)

Ser(S)

Pro(P)

Thr(T)

Ala(A)

Tyr(Y)

STOP STOP

His(H)

Gln(Q)

Asn(N)

Lys(K)

Asp(D)

Glu(E)

Arg(R)

Ser(S)

Arg(R)

Gly(G)

U

C

A

G G

A

A

C

CU

U

G

Cys(C)

Trp(W)

(START)

Figure 2.3: Genetic code - Triplet codon (example: UUU); 3 letter representation of
amino acid (example: Phe) and corresponding 1 letter representation (example: F)

onine(T), Tryptophan(W), Tyrosine(Y) and Valine(V).

Amino acids are small molecules containing an amino group, carboxyl group, hy-

drogen atom and a side chain (or R group) attached to the central carbon (or alpha

carbon) [22]. Amino acids differ only in the side chain R. The amino acids are linked

to one another by the central carbon of one amino acid with the amino group of the

other amino acid forming a peptide bond. The amino acids in the long chains are

referred as residues.

2.2.1 Amino acid classification

The similarity of amino acids is classified based on the chemical properties of the

side chain ( R group). Two major classifications are Hydrophobic (non-polar) - not
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|

OR

|||

H

   - C  - C  - OH   HN
 2

alpha carbon

carboxyl group

amino group

Figure 2.4: The basic structure of an amino acid

soluble in water: A, I, L, M, F, P, W and V and Hydrophilic (polar) - soluble in

water: R, H, K, D, E, N, C, Q, G, S, T and Y. The polar class is further divided into:

positively charged: R, H and K, negatively charged: D and E and uncharged: N,

C, Q, G, S, T and Y. Amino acids are also grouped together based on their physio-

chemical properties by which they could be substituted for one another in protein

sequences with minimal apparent affect on the functionality of the proteins, known

as Conservative substitutions [6]. The following are some of the groupings: ILVM,

RK, DE, ST, AG and FY.

2.2.2 Structure

The sequence of amino acids forming a protein is known as the primary structure

of the protein. In nature, protein molecules collapse and fold into a unique structure

known as native structure. There are some patterns in the native structure that

are quite common and found in many proteins, the location and direction of these

patterns are called secondary structures. The three main secondary structures are α-

helix, β-sheet and random coil. The α-helix is formed by the hydrogen bonds between

the carbonyl group of the ith residue and the nitrogen group of the (i+ 4)th residue

(fig 2.5). An α-helix on average has 10 residues having 3.6 residues per turn [17].

β-sheets are strands of amino acid sequences forming hydrogen bonds between them.

The bonds are formed between the carbonyl oxygen of amino acids from one strand
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Figure 2.5: Protein secondary structure: α- Helix

with nitrogen groups of the other strand. The strands could be parallel or anti-parallel

to each other. A β-sheet can consist of all parallel strands or all anti-parallel strands

or can contain both. β-sheets usually consist of 5 to 10 residues [7](fig 2.6). Random

coils are sequences of amino acids that connect α- helices and β-sheets and they are

not regular structures, both in shape and size.

2.2.3 Motif and domain

A motif is a combination of a few secondary structures [7]. For example, helix -

random coil - helix is a motif. A domain is a more complex combination of secondary

structures having a specific function by binding to external molecules (i.e, DNA),

therefore referred to as active site. A domain could maintain its characteristic struc-

ture even if separated from the original protein [7]. A protein can have several motifs,

which can combine to form specific domains, and one or more domains together form

the protein’s tertiary structure.
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Figure 2.6: Protein secondary structure: β- Sheets

2.2.4 Sequence alignment

2.2.4.1 Pairwise alignment

The number of proteins that exists in nature is very large but these proteins could

be classified based on the sequence pattern, structure and their functionality. Pro-

teins that have similarities in their sequences are believed to be derived from an

common ancestor. Therefore, determining the similarities of sequences would help

to understand the evolution of proteins. Sequence alignment is a technique used to

compare biological sequences in order to study the similarities and differences to find

the origin of evolution between them. Sequences that share sequence similarity would

differ from one another in some sequence positions due to

1. substitution that replaces one nucleotide/amino acid with another.

2. an insertion that adds one or more nucleotides/amino acids.
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A - Y R Q C L C R P S T Q R V L

A M Y N R C V - - P S T L V R Q

Insertion/Deletion

(Gap)

Substitution Inversion

Long Insertion/Deletion (Gap Extension)

Figure 2.7: Alignment between two sequences

3. deletion that deletes one or more nucleotides/amino acids.

4. inversion that reverses the orientation of subsequences.

Given two sequences a = a1 . . . am and b = b1 . . . bn over the alphabet Σ. An align-

ment of the sequences a and b is a pair of sequences a
′

1 . . . a
′

l and b
′

1 . . . b
′

l of equal

lengths defined over the extended alphabet Σ′ = Σ∪ {-} containing blank character

’-’ such that the string a′ is derived from a and string b′ is derived from b. The

alignment is denoted by

a′1a
′

2 . . . a
′

l

b′1b
′

2 . . . b
′

l

The length l of an alignment (a
′

,b
′

) is restricted to max{m,n} ≤ l ≤ m + n, since

column pairs are not allowed. In sequence alignment, the blank character ’-’ is referred

as a gap denoting insertion/deletion referred to as an indel (fig 2.7).
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2.2.4.2 Alignment score

Scoring schemes are used to evaluate the alignment between sequences. There are

two scores that are used in alignment evaluation:

1. substitution score

2. insertion and deletion score.

2.2.4.3 Substitution score

Substitution scores are matrices developed based on experimental data that encode

the expected evolutionary change at the amino acid level. One of the widely used sub-

stitution scores in amino acid alignment is Point Accepted Mutation Matrix (PAM)

developed by Dayhoff in 1978 [17]. The PAM matrix M contains the probability of

amino acid i replaced by amino acid k in a certain evolutionary time period [17]. For

example, 1PAM represents, 1 substitution per 100 residues therefore, nPAM is n ac-

cepted substitutions in 100 residues (i.e, probability that amino acid i will be replaced

by amino acid k in sequences separated by nPAMs of evolutionary distance). 1PAM

is generally used for closely related sequences and higher PAM matrices are used for

distantly related sequences (highly divergent). 1PAM was obtained by calculating

the substitution probabilities based on 71 groups of sequences with > 80% sequence

identity [9]. The entries of 1PAM matrix M1 is calculated as

Mij = log

mj∗Fij

ΣiFij

fi

where, the relative mutability mj is the number of times the amino acid i is substi-

tuted, Fij is the number of times amino acid i is substituted by amino acid j and

fi is the frequency of amino acid i. Once M is known, the matrix Mn gives the
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probability of any amino acid mutating to any other amino acid in nPAM units. The

PAM matrix Mn for n > 1 can be obtained by matrix multiplication of M1.

M2 = M1 ∗M1

M3 = M2 ∗M1

...

Mn = M (n−1) ∗M1

Another substitution matrix widely used is BLOSUM (Blocks Substitution Matrix),

developed by Henikoff and Henikoff in 1992 based on known alignments of more

diverse sequences [9]. The matrix is based on the ungapped alignment (block) from

the sequence alignment. Like the PAM matrix, different BLOSUM scoring matrices

are obtained for different evolutionary distances. For example, BLOSUM80 matrix

represents sequences with approximately 80% identity in sequence alignment.

The relationship between the two substitution matrices is given as, BLOSUM with

low percentage corresponds to PAM with large evolutionary distances (i.e PAM250

→ BLOSUM45, PAM120 → BLOSUM80). Lower numbered BLOSUM matrices are

appropriate for more distantly related sequences and lower numbered PAM matrices

are appropriate for more closely related sequences.

2.2.4.4 Insertion/deletion score

Insertion and deletion scores are calculated based on the gap opens (single in-

sertion/deletion) and gap extensions (long insertion/deletion)(fig 2.7). Since long

insertions and deletions are expected less than single insertion and deletion, they are

penalized less.
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V - E I T G E I S T
P R E - T E R I T-

V E I T G E I S T

P R E T E R I T-
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-

--

ALIGN3:

ALIGN2:

ALIGN1:

Figure 2.8: Three possible alignments of two sequences

There could be more than one possible alignment between the sequences (fig 2.8)

but, the best alignment reflects the evolutionary relationship between homologous

sequences. In order to find the best alignment, exhaustive search of all possible

alignments are not feasible. Therefore, alignment algorithms use a dynamic program

approach to break the problem into subproblems and using partial results to compute

the final answer [17].

2.2.4.5 Multiple sequence alignment

Multiple sequence alignment is an extension of pairwise alignment to align more

than two sequences simultaneously. Multiple sequences are aligned in order to provide

insight into

1. characteristics of protein families

2. identify motifs in sequences with a conserved biological function

3. identify motifs of new proteins that would help to determine biological function.

There are several multiple sequence alignment algorithms. Algorithms with a heuris-

tic approach are more commonly used than the ones that give optimal alignment
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because optimal alignments are practical only for a handful of sequences. Heuristic

algorithms are rapid, require less memory space and offer good performance when

used on relatively well conserved homologous sequences. One of the most common

heuristic approaches is Progressive alignment used by ClustalW [22]. The Progressive

alignment algorithm works as follows:

1. determine pairwise alignment between all pairs of sequences and their alignment

scores.

2. construct a guide tree (phylogenetic tree - see section 2.2.5) using the alignment

score.

3. Align sequences according to the guide tree by aligning the most closely re-

lated sequences using sequence-sequence alignment first, then profile-sequence

alignment( between an alignment and a sequence) and finally, profile-profile

alignment( between alignments).

In ClustalW substitution matrices and gap penalties vary at different stages of align-

ment depending on the divergences of the sequences to be aligned. Gap penalties

depend on the substitution matrices, the similarity of the sequences, and the length

of the sequences in order to introduce new gaps in the coil region rather than in

secondary structure regions [22]. One the drawbacks of progressive alignment is that

it is unreliable when highly divergent sequences are aligned.

2.2.4.6 Protein classification

A set of proteins that share a common evolutionary origin reflected by their relat-

edness in function, which is usually demonstrated by similarities in sequence, or in

primary, secondary, or tertiary structure is known as Protein Family[1]. Similarly,

superfamiliy is collection of protein familes that have same overall domain structure

(i.e, same domain in same order) [2]. There are several protein family databases such



16

Fish FrogMouse

Bird

LizardSnake

A

BC

D

E

Figure 2.9: Phylogenetic tree - (B,C,D,E) - internal nodes; snake, lizard, bird, mouse,
fish, frog - leaf nodes

as Prosite and Pfam. Proteins are also classified based on the secondary structure

similarities. Some databases that group proteins based on structure classifications

are SCOP (Structural Classification of Proteins) and CATH (Class, Architecture,

Topology and Homologous superfamily).

2.2.5 Phylogenetic tree

Evolutionary relationships between species/sequences (taxa) are called phyloge-

nies and they are graphically represented by trees known as Phylogenetic trees. A

phylogenetic tree is made up of nodes and branches. Nodes represent distinct taxo-

nomical units. Nodes at the tips of the branches are terminal nodes and the internal

nodes represent an inferred common ancestor (fig 2.9). Branch lengths indicate the

amount of divergence between different species/sequences, longer the lines between

two species/sequences, the greater the difference between them. Branch order refers

to the genealogy of the organism. If two species/sequences are closer to the branch

then closer their relationship.
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2.2.5.1 Tree construction

One of the widely used tree constructions is the neighbor-joining Method based

on distance matrices. The distance matrix consists of estimated distance between all

pairs of taxas or operational taxon (OTU) (fig 2.10a) calculated from any method

(say sequence alignment) used to find similarities and differences between sequences.

The neighbor-joining method starts with a star tree having central node X of degree

m ( number of neighbor of X). The new internal nodes are successively created and

the degree of X is reduced by 1 in each cycle. The iteration stops when the degree of

X becomes 3.

A B

B

C

C D

D

E

F

E

5

4

7

6
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(a) Distance matrix of fig 2.11a

     (a)

A B

B

C

C D

D

E

F

E

-13
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O

T

U

O

U

C D

D

E

F

E

3
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T
5

6
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7

(b)

-11.5 -11.5

-10.5-10 -10

-10.5-10 -10 -13

-10.5 -10.5 -11.5-11.5-11
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(b) (i) Distance Matrix for fig 2.11a based on neighbor-joining method (ii)
Distance matrix for fig 2.11b

Figure 2.10: Distance matrices
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F

Figure 2.11: (a) A star tree (b) a tree with nodes A and B clustered

The construction of phylogenetic tree by neighbor-joining method ([19]) using dis-

tance matrix is explained using the following steps.

1. start with a star tree (fig 2.11a).

2. calculate the net divergence r(i) for each of the OTU’s from all the OTU’s using

the distance matrix from fig 2.10a, net divergence for A is given as

r(A) = 5 + 4 + 7 + 6 + 8 = 30

3. calculate a new distance matrix (fig 2.10b(i)) using the formula

M(ij) = d(ij)− [r(i) + r(j)]/(N − 2)

where N is the number of OTU’s, N=6 for fig 2.11a and d(ij) is the distance

between i and j, d(AB) = 5.

4. Choose two OTU’s (A and B from fig:2.11a) from the distance matrix (fig:2.10b(i))

that has the smallest distance and create a new internal node Y that connects

A, B and X.

5. calculate new branch length for A and B from Y using

S(AY ) = d(AB)/2− [r(A)− r(B)]/2(N − 2), S(BY ) = d(AB)− S(AY )
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also, calculate the distance between Y to all the other nodes. The new distance

matrix (fig 2.10 b(ii)) is created for fig 2.11b.

6. repeat process from step 2 until the degree of X becomes 3.
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Chapter 3

Chaos and fractals for biological

sequences

3.1 Fractal

A fractal is a geometric figure that does not become less complex when you break

it down into smaller and smaller parts. This implies, a fractal is scale invariant. The

word fractal was coined by Mandelbrot from the Latin word fractus meaning broken

or uneven, to describe objects that are too irregular to fit into traditional geometry

[10]. For example, if we take a straight line and remove the middle third from it,

we obtain two small straight line segments and if we continue this process repeatedly

for smaller segments, in the limit we obtain a fractal called the Cantor set (fig 3.1).

Similar examples are the Koch curve and the Sierpinski triangle (fig 3.2, fig 3.3). In all

of the above examples, the same structure has been repeated at all scales. Therefore,

these fractals are known as self-similar fractals. It is not necessary for fractals to be

self-similar. For example a coastline, the human body, or the sky on a partly cloudy

day are fractals without being self-similar[5].
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8/97/92/31/31/9 4/9 10

12/31/30

10

Figure 3.1: The middle third Cantor set generated by repeated removal of middle
third of interval

Figure 3.2: The Koch curve generated by replacing the middle third of each interval
by the other two sides of an equilateral triangle [3]:(Used)

3.1.1 Properties of fractals

Based on the examples above, we have the following properties of fractals [10]. A

fractal set F

1. has a fine structure i.e detail on arbitrarily small scale;

2. is too irregular to be described by traditional geometry;

3. often has some form of self-similarity, perhaps approximate or statistical. For

example, any part of the Cantor set F in the interval [0, 1
3
] and the interval [2

3
, 1]

are geometrically similar to F. Figure 3.1, 3.2 and 3.3 contain copies of itself at

different scales;

4. is in most cases defined recursively. For example, the Cantor set is generated
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Figure 3.3: The Sierpinski triangle generated by repeatedly removing the inverted
equilateral triangle from the center of the initial equilateral triangle.

by repeatedly removing the middle third of intervals and the Sierpinski triangle

is obtained by repeatedly removing the inverted triangle.

5. usually has the fractal dimension (see 3.1.1) greater than the topological dimen-

sion (see below) or Covering Dimension.

The topological dimension is defined as

A covering of a subset S of a topological space X is a collection C of open sub-

sets in X whose union contains all of S

A refinement of a covering C of S is another C′ of S such that each set B in C′ is

contained in some set A in C. The idea is that the sets in C′ are in some sense

“smaller” than those in C and provide a more finely detailed coverage of S.

A topological space X has topological dimension m if every covering C of X has

a refinement C′ in which every point of X occurs in at most m+ 1 sets in C′, and m

is the smallest such integer.
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3.1.2 Mathematical fractals

Mathematically, a great variety of fractals could be generated by iterating a collec-

tion of transformations, forming what is known as an Iterated Function System (IFS).

If all the transformations in an IFS are contractive mappings then iterating these

transformations would definitely converge to a unique shape. A contractive mapping

is a transformation f that reduces the distance between every pair of points. That

is, there is a number s between 0 and 1 and

dist(f(x, y), f(x′, y′)) ≤ s ∗ dist((x, y), (x′, y′))

Formally, a contractive mapping, an IFS and an affine transformation are defined as

Definition 1: A transformation f : X → X on a metric space (X , d) is called a con-

tractive mapping if there is a constant 0 ≤ s ≤ 1 such that d(f(x), f(y)) ≤ s ∗ d(x, y)

∀x, yεX , where d is the Euclidean distance and any s the contraction factor of f .

Definition 2: Let T1, T2, ..,TN be a family of contractions on ℜk and S be a closed

bounded subset of ℜk. Then the system S: T = Un
i=1 Ti is called an iterated function

system.

Definition 3: An affine transformation of ℜn is achieved by applying a linear trans-

formation followed by a translation. An affine transformation T of ℜn is represented

in matrix-vector form as

T (x) = Ax+ b, x ∈ ℜn and A is a transformation matrix
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3.1.3 Example

The following example explains the mathematically generated self-similar fractal

called the Sierpinski triangle (fig 3.3). Consider E0 to be a unit triangle. The con-

tractive mapping for producing the Sierpinski Triangle is given by three affine trans-

formations. The three affine transformations for the Sierpinski triangle are

T1







[ x1

x2

]





 = 1/2
[ 1 0

0 1

] [ x1

x2

]

+
[ 0

0

]

T2







[ x1

x2

]





 = 1/2
[ 1 0

0 1

] [ x1

x2

]

+
[ 1/2

0

]

T3







[ x1

x2

]





 = 1/2
[ 1 0

0 1

] [ x1

x2

]

+
[ 1/4

√

(3)/4

]

with a contractive factor 1
2
. Applying T1 (E0), T2 (E0) and T3 (E0) to the triangle

E0 produces three smaller equilateral triangles E1. Similarly, applying all the three

transformations to all the three vertices of each of the smaller triangles E1 produces

nine smaller triangles E2. The iterative application of the three affine transformations

produces smaller and smaller triangles resulting in the Sierpinski triangle (fig 3.3).

The iterative scheme is

E0 = a compact set

E1 = T (E0) = T1(E0)
⋃

T2(E0)
⋃

T3(E0)

E2 = T (E1) = T1(E1)
⋃

T2(E1)
⋃

T3(E1)
...

En = T (En − 1) = T1(En − 1)
⋃

T2(En − 1)
⋃

T3(En − 1)

This sequence would converge to a unique shape (the Sierpinski triangle) called an

attractor. Since all the transformations are applied in each step, this approach is a
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n length of the segment number of segments Length of the Koch curve Ln

0 1 1 Ln = 1
1 1/3 4 Ln = 4/3
2 1/9 = 1/32 16 = 42 Ln = 16/9 = (4/3)2

3 1/27 = 1/33 64 = 43 Ln = 64/37 = (4/3)3

. . . . . . . . . . . .
n 1/3n 4n Ln = (4/3)n

Table 3.1: Dimension of the Koch curve using length of line segments

deterministic approach.

3.1.4 Fractal dimension

The dimension is a topological measure of spacial extent. For example, a point has

a dimension 0, a line has a dimension 1, a square has a dimension 2 and a cube has

a dimension 3. However, topological dimension cannot be used to measure fractals,

because, for example, when trying to measure the length of the Koch curve using line

segments, as the number of line segments needed to measure the length increases,

the length of the Koch curve increases, leading to infinity (fig 3.4). Table 3.1 lists

the increasing length of the Koch curve as the number of line segments needed to

measure the Koch curve increases (The initial line is of length 1).

Similarly, when trying to compute the area of the Koch curve by covering it with

triangles, as the number of triangles needed to cover the Koch curve increases, the

area of the Koch curve decreases leading to zero (fig 3.4). The initial triangle is an

isosceles triangle with base 1 and height
√

(3)/6. In the next stage the Koch curve

is covered with three smaller triangles whose base and height are reduced by 1/3

compared to the initial triangle. As the process continues, at every stage the area

of the triangles are reduced leading to zero. In the above metioned examples the
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n Area of the triangle number of triangles Area of the Koch curve An

0
√

(3)/12 1 An =
√

(3)/12

1 (
√

(3)/12) ∗ (1/9) 4 An = (
√

(3)/12) ∗ (4/9)

2 (
√

(3)/12) ∗ (1/81) 16 = 42 An = (
√

(3)/12) ∗ (16/81)

. . . . . . . . . . . .

n (
√

(3)/12) ∗ (1/9)n 4n An = (
√

(3)/12) ∗ (4/9)n

Table 3.2: Dimension of the Koch curve using area of triangles

Topological Dimension of the Koch Curve using Triangular Area

Topological Dimension of the Koch Curve using Line Segements

Figure 3.4: Topological dimension of the Koch curve [3]:(Adapted)

dimension of the Koch curve leads to either infinity or zero producing no limiting

value. Measuring an object in an dimension lower than the object produces infinity

and higher than the object produced zero. This implies the dimension of the Koch

curve is > 1 but < 2 a fractional value. Table 3.2 lists the area of the Koch curve for

various sizes of the triangle needed to cover the Koch curve.

Therefore, we use a better dimension called Box counting dimension [3] to calculate

the dimension of fractals. The box counting dimension of a fractal is calculated by

covering the fractal with boxes and calculating the number of boxes Nr of size r

needed to cover the fractal (fig 3.5). The size of a fractal set is measured by its

dimension(df ) given as:

df = limr→0
logN (r)
log r
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r = 1/3   N(r) =3

r = 1/9   N(r) =12

r = 1/27  N(r) =48

Koch Curve

Figure 3.5: Box counting dimension of the Koch curve [3]:(Adapted), r - length of
the sides and N(r) - no. of boxes needed to cover the fractal

For better approximation, the number of boxes needed to cover the fractal for various

box sizes r is calculated and the fractal dimension is the slope of log-log plot of size

of the boxes against the number of such boxes needed to cover the fractal.

Example: Figure 3.5 depicts the number of boxes needed to cover the Koch curve

for varying box sizes. The slope of a log-log plot of size of the boxes against the

number of boxes needed to cover the Koch curve gives the fractal dimension of the

curve.

3.2 Chaos game

Another approach to generate fractals is the random approach of Chaos Game.

Consider a triangle and the three transformations defined in section 3.1.3. Let the
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initial set be a single point. Assume that, at each step, one of the three transforma-

tions is randomly chosen and applied. Therefore, the output at each stage is a single

point. After some transient behavior the points generated form a fractal - Sierpinski

triangle. The iteration scheme is

y0 = start point

y1 = T1(y0) or T2(y0) or T3(y0)

...

yn = T1(yn−1) or T2(yn−1) or T3(yn−1)

For example, consider a triangle with vertices (0,0),(1,0) and (1/2,
√

(3)/2)(fig 3.6).

The center of the triangle is chosen as the starting point. Choose randomly one of

the transformation, say T2, and apply it to the center point: This would produce

a point (say p), which is the midpoint of the center and the vertex (1,0). Again,

randomly choose another transformation, say T3, and apply it to the previously pro-

duced point (p): The new point produced is the midpoint of the point p and the

vertex (1/2,
√

(3)/2). As this process is continued for large number of times, the im-

age produced looks like a Sierpinski triangle. The chaos game can be played with any

number of vertices, four, five, six and so on. If the vertices are not selected uniformly

at random in chaos game then various patterns are produced. This reveals some kind

of order in the sequence.

Intuitively, order (non-randomness) means the sequence has a structure. Therefore,

the chaos game can be a used as a tool to study the non-randomness of any sequence

visually. If the chaos game can be extended to play on DNA or protein sequences

then various patterns/structure in them could be revealed.
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Figure 3.6: Sierpinski triangle using the chaos Game
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Chapter 4

Chaos game representation of

DNA and protein sequences

4.1 Chaos game representation of DNA sequences

Chaos game representation (or CGR) is a visual representation technique used,

among others to study the patterns in gene structures [16]. The chaos game is played

on a square using IFS. The nucleotide bases (A,C,G,T) correspond to the four ver-

tices; the first point is plotted halfway between the center of the square and the cor-

responding vertex of the first nucleotide base in the sequence, and each subsequent

point is plotted halfway between the previous point and the vertex of the subsequent

nucleotide base from the sequence (fig 4.1a). The chaos game when applied to DNA

sequences showed fractal structures (fig 4.1b , fig 4.1c). Figure 4.1b represents the

attractor of chaos game of (Human Beta Globin-HUMBB). The ’double scoop’(sparse

regions on fig 4.1b) structure in the attractor is due to the paucity of points in various

regions of the square [16]. Similarly, when A & T and C & G were plotted opposite to

one another, the paucity of points is represented by squares instead of ’double scoop’

(fig 4.1c). The patterns are repeated on various scales in the attractor exhibiting
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the property of self-similarity. These patterns revealed the non-random nucleotide

composition in DNA sequences. In a CGR, any ith point in the attractor uniquely

represents the ith long initial subsequence of the sequence. The attractor depicts

the base composition of the gene sequence [16]; the square, when divided into four,

sixteen, sixty four sub-quadrants and so on represents the mono, di- and tri- etc.

nucleotides subsequences (fig 4.1d).

Using a CGR, the presence or absence of a sequence of nucleotides in any DNA

sequence can be mathematically characterized [8]. Dutta et.al [8] gave algorithms to

find the subsequences corresponding to any given point in CGR, and to simulate CGR

patterns of a sequence by predicting the order of nucleotides using the probability

of occurrences of di or tri nucleotides [8]. These algorithms are presented in the

appendices A and B.

Hill et.al in 1992 [14] examined the coding region of the CGR’s of seven globin genes

from human and the CGRs of 29 closely related alcohol dehydrogenase genes from

phylogenetically divergent species. CGRs of Human globin coding regions and the

CGR of the entire Human Globin gene (coding and non-coding) are visually similar

to each other but the self-similarity was not readily visible in the individual sequences

due to smaller number of points (2000 nucleotides). Also, the di-nucleotide frequencies

of the globin genes from human are not significantly different from one another.

Therefore, the di-nucleotide frequencies partially accounted for the self-similarity in

the CGR patterns [14]. CGRs from coding regions of alcohol dehydrogenase gene

from the same species (ADH1, ADH2 etc) are similar to one another. Also, ADH

CGRs of closely related species such as human, rodent, primate were similar to one

another[14]. CGRs of unrelated genes from the same species are more similar to one

another than sequences from unrelated species. Therefore, Hill et.al in 1992 [14] said

that the CGR patterns reflect genome type specificity which could be the result of
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AGAA
AGAAT

A T

GC

(a) CGR-AGAAT; Plotting
”AGAAT”- ’A’ is plotted half-
way between the center and the
vertex representing A, ’G’ is plotted
half-way between the previous point
plotted and the vertex representing
G, ’A’ is plotted half-way between
the previous point and the vertex
representing A, next ’A’ is plotted
halfway between the previous point
and the vertex representing A and
similarly ’T’ is plotted

A T

GC

(b) CGR-HumanBetaGlobin; Nu-
cleotides A,C,G,T are represented as
red, violet, green and blue; paucity
of dinucleotide CG forms a ’Double
Scoop’ pattern

A G

TC

(c) CGR-HumanBetaGlobin; paucity
of dinucleotide CG forms a square pat-
tern as vertices C and G are opposite
to each other.

A T

GC

(d) Mono-, di-, and Tri- nucleotide configu-
ration

Figure 4.1: Properties of CGR



33

mutation rates of mono, di, tri nucleotide bases and so on and said the evolution

of a gene and its coding sequences should not be examined in isolation, genome

specific differential mutation in di-nucleotides or oligonucleotide should be taken into

account [14]. Hill et.al in 1997 [15] studied 28 complete mitochondrial genomes using

CGR. They said, the global DNA sequence organizationof mitochondrial genomes is

species-type specific. The species-type specific patterns appear primarily due to the

dinucleotide composition.

CGRs generated from simulated sequences using a first-order Markov-chain prob-

ability matrix for Human Beta Globin and second-order Markov-chain probability

matrix for Bacteriophage Lambda were similar to CGRs of the original Human Beta

Globin and Bacteriophage Lambda sequences [12]. The first-order and second-order

Markov probability matrices were obtained from calculating the dinucleotide and

trinucleotide frequencies directly from the DNA sequences without reference to the

CGR. Therefore Goldman in 1993 [12], suggested that CGR is a particular case of

Markov-Chain model and CGR is only limited to represent mono, di and tri nucleotide

representation of the sequences [12].

The Markov chain model is limited to produce only integer number of bases whereas

the frequency matrix obtained from CGR (FCGR) can produce non-integer number of

bases [4] in contradiction to statement by Goldman in 1993 [12]. The frequency matrix

for oligonucleotides of length nc is obtained by dividing the CGR into a 2nc ∗2nc grid.

Then the Markov chain probability matrix could be obtained from FCGR only if the

quadrant k satisfies the condition in the following equation to produce an integer order

k = 22nc , nc is an integer ≥ 1
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But, if the condition ’nc is an integer ≥ 1’ is removed then

nc = log2(k)/2,

i.e FCGR can track the frequency of oligonucleotide of non-integer order. Therefore,

CGR enables the determination of the frequency of redundant fractionary sequences

also, FCGR of non-integer order can be used to calculate global distance and local

similarities between sequences [4].

If k=3, then the patterns in CGR are determined by mononucleotide, dinucleotide

and trinucleotide frequencies but if k > 3, then longer oligonucleotides may influence

the CGR patterns. Therefore, Wang et.al [20] said, a CGR of 1/2k resolution is com-

pletely determined by all the frequencies of length k when the length of the DNA

sequence is longer than k . They also analyzed the relationship between dinucleotide

relative abundance profile 1(DRAP) and CGR. DRAP can be computed from second-

order or dinucleotide frequency FCGR, but second order FCGR cannot be computed

from DRAP. Therefore, DRAP or rFCGR (relative FCGR) is a special case of FCGR.

Wang et.al [20] said, an n th order FCGR provides more info than DRAP. However,

the second-order FCGR or DRAP is a good choice of genomic signature 2 as the

computational cost is higher for higher order FCGRs [20]. A new distance measure

called image distance used to calculate the distance between genomic signatures of

two DNA sequences [20] is given by

dIR
(

Ā, B̄
)

= 1/4k ∗
∑2k

i=1

∑2k

j=1

∣

∣

∣

∣

densityR
(

Ā
)

i,j
− densityR

(

B̄
)

i,j

∣

∣

∣

∣

1ratio of the dinucleotide frequency to the frequency of two single nucleotide composing this
dinucleotide

2The whole set of short oligonucleotide frequencies observed in a DNA sequence is species-specific
and is thus considered as a GENOMIC SIGNATURE
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Ā = 4k/
∑

i

∑

j ai,j ∗ A and

B̄ = 4k/
∑

i

∑

j ai,j ∗ B

where A and B are frequency matrices of kth order, R is the radius of the neighbor-

hood centered at (i, j) and densityR. The phylogenetic trees built using the Euclid

distance, Pearson distance and Image distance between two CGRs have proven to be

more compatible with phylogenetic relatedness of species than the tree obtained from

ClustalW [20].

4.2 Chaos game representation of protein sequences

4.2.1 Chaos game using a 20 sided polygon

The chaos game representation of protein sequences was used to find the motifs

in the sequence, describe regularities in structure elements, and evaluate various sec-

ondary structure prediction algorithms [11].

4.2.1.1 Method

Fiser et.al in 1994 [11] applied Chaos Game Representation to protein sequences to

investigate the motifs in the protein database and protein sequences. A 20-sided regu-

lar polygon was used to represent the 20 different amino acids. The (x, y) coordinates

of each of the vertices were given as

vi,x = cos(2π ∗ i/n)

vi,y = sin(2π ∗ i/n)
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4.2.1.2 Plotting

The coordinates of the 0th point are [0,0] and the mth point was given by dividing

the distance between the (m− 1)th point and the vertex representing the mth amino

acid using the dividing ratio s1 and s2.

The coordinates of the points are

pm,x = (vm,x − pm−1,x) ∗ s2 + pm−1,x

pm,y = (vm,x − pm−1,y) ∗ s2 + pm−1,y

The dividing ratio s1: s2 is 0.135:0.865 calculated from

s1 = sin(2π ∗ i/n)/(1 + sin(2π ∗ i/n))

s2 = 1/(1 + sin(2π ∗ i/n))

A lower dividing ratio was used in order to obtain an unambiguous and decodable

fractal for an attractor.

4.2.1.3 Properties

The attractor produced was a 20-gon in which there are small separate 20-gons at

every vertex. The small 20-gon can further contain smaller 20-gons in their vertices

etc (fig 4.2). For example, an amino acid subsequence IDEAL can be decoded by

zooming the 20-gon at vertex L followed by the 20-gon at vertex A of the L polygon,

the 20-gon at vertex E of the A polygon, the 20-gon at vertex D polygon and the 20-

gon at vertex I of the D polygon. Theoretically, each point represents the preceding

sequence motif. Eventhough the attractor can be used for identifying subsequences
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or motifs, they are indistinguishable as the sequence length increases. Fiser et.al

extended the chaos game to study the regularities in secondary structure elements

of proteins. The major secondary structures helix, sheet and turn were represented

as vertices of a triangle and the random coil as the center. The attractor produced

was used to study the frequency of attachment of various secondary structure and

evaluate structure prediction methods. Therefore, CGR could be used to study both

primary and 3D structures of proteins [11].

4.2.1.4 Limitation

The major drawback of this approach is that as the sequence length becomes larger

all the polygons looks equally filled. Therefore, various sequence motifs become in-

distinguishable.

Figure 4.2: CGR using 20-gon of DNA Polymerase Human Alpha Chain: Length =
1462
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4.2.2 Chaos game using a rectangle

4.2.2.1 Method

A rectangle was used to represent the sequentiality and composition of amino acids

in a sequence. The rectangle was divided into 5 x 4 sub-rectangles representing 20

different amino acids.

E K

R S T Y H

C N W GQ

1
2

4

8

5
6

7

9
10

3

Amino acid sequence:  A P K A D D D R N G

Point Number           :  1  2  3  4  5  6 7  8  9  10

D

A V F P M

I L

Figure 4.3: 2D point representation using rectangle for sequentiality and composition
of amino acids

4.2.2.2 Plotting

The chaos game is played as follows: the first point is plotted in the middle of

the sub-rectangle labelled with the first amino acid in the sequence. The ith point is

plotted by scaling the (i-1)th point by 1/5 in x -direction and 1/4 in y-direction and

moving the point to the sub-rectangle labelled with the ith amino acid (fig 4.3).
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4.2.2.3 Properties

Some characteristic properties noted were that the points that follow after the

insertion and deletion of amino acids are shifted but the degree of shifting is reduced

by 5n in the x-direction and 4n in the y-direction, where n is the number of letters

after the inserted/deleted position. Therefore, insertion/deletion does not change the

overall visual impression of the point pattern . The reduction in shift was also noted

when there were repeats in amino acids. [18].

4.2.3 Chaos game using a 12 sided polygon

4.2.3.1 Method

CGR can be used to study characteristic patterns of protein families [6]. A 12 sided

regular polygon was used to plot a concatenated amino acid sequence of proteins

from protein family (fig 4.4). Each vertex of the polygon corresponded to a group of

amino acid residues of conservative substitutions (section 3.3) and the amino acids

along the vertices of the polygon were placed in the order of decreasing normalized

hydrophobicity.

4.2.3.2 Plotting

The chaos game was played as in the case of DNA sequences using the square [16]. A

grid counting algorithm was used to quantify the CGR. The 12 sided regular polygon

was divided into 24 segments and the number of points in each segment was calculated,

the percentage of points in each segment was given by Cj / N* 100(j=1..24).

4.2.3.3 Properties

Even though no fractals were detected in the CGRs, there were specific statistical

biases in the distribution of different amino acids, mono-, di-, tri- or higher order
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Figure 4.4: CGR using 12 sided polygon; HEAT SHOCK PROTEIN 90 (hsp90)
family

peptides in functional classes of proteins [6]. The CGRs of a protein family were

dependent on the relative order of the residues. The patterns were insensitive to the

shuffling of less abundant residues along the vertices of the polygon, but sensitive to

the shuffling of more abundant residues along the vertices. The plots are visually

similar for a protein class for many different orientations of the residues. The grid

count was also invariant for a particular family of proteins and particular orientation

of the residue group along the vertices of the CGR irrespective of the number of

sequences concatenated and the order of concatenation. Therefore, the grid count can

be used as a diagnostic signature of a protein family for identifying new members of

the family and CGR has a potential to reveal evolutionary and functional relationship

between proteins having no significant homology [6].

4.2.4 Chaos game using a square

Multi-fractal and correlation analysis were performed on CGR of bacteria families

to study the phylogenetic relationship between sequences and sub-families [21].



41

4.2.4.1 Method

A detailed hydrophobic or non-polar and hydrophilic or polar (HP) model is used to

represent the four classes of amino acids - non-polar, uncharged, positively charged

and negatively charged as four vertices of the square.

4.2.4.2 Plotting

The chaos game is played as in the case of DNA sequences [16]. The square is

divided into equal meshes and a measure µ for each mesh was calculated by dividing

the number of points lying in the subset of the CGR by the length of the sequence.

This is represented as a measure matrix A. Also, a symbolic sequence is created

based on the probability of amino acids in the position of the original sequence and a

measure matrix is calculated for it and referred to as a measure of fractal background

Af . A new measure matrix Ad is obtained by subtracting the measure matrix of the

fractal background from the measure matrix of the original sequence and used for

calculating the correlation distance.

4.2.4.3 Properties

The phylogenetic tree based on correlation distance is more precise as the mesh size

increases [21]. Multifractal analysis ([13]) of the test sequences exhibited multi-fractal

like forms indicating that the protein sequences of a complete genome are non-random.

Also, said, the correlation analysis is more precise than the multi-fractal analysis for

the phylogenetic problem[21].
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4.2.5 Summary

The following table summarizes the results of Chaos Game Representation on Pro-

tein Sequences in two dimensions.
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Approach Novel Advances Limitations Authors Year
Chaos Game using 20 sided polygon, 20
vertices represents 20 amino acids

motif detection in protein
database,regularities in secondary
structure elements and evaluation
of secondary structure prediction
methods

for large sequences,
motif detection is not
easy due to resolu-
tion of the monitor

Fiser
et.al

1994

Chaos Game using a 5 x 4 rectangle sequentiality and composition of
amino acids

Pleibner 1997

Chaos Game using 12 sided polygon, 12
vertices represent 12 groups of amino acids

Characteristic patterns of Protein
family, measure to detect protein
family for a given protein

individual represen-
tation of amino acid
is lost

Basu
et.al

1997

Chaos Game using a square, vertices rep-
resent non-polar, uncharged, positively
charged and negatively charged amino
acids

evaluate phylogenetic tree of bacte-
ria

individual represen-
tation of amino acid
is lost

Yu
et.al

2004

Table 4.1: Summary - Chaos game representation of protein sequences in two dimension
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Chapter 5

Three dimensional CGR of protein

sequences

The chaos game representation of proteins in two dimensions discussed in the pre-

vious chapter helped to identify motifs in the protein databases and to test secondary

structure prediction methods [11], reveal patterns that distinguish protein families

[6], understand the sequentiality and composition of amino acids [18] and better

understanding of the bacterial family homology [21]. In this chapter, a new three

dimensional approach to CGR (3D-CGR) as an analysis tool of protein sequence is

proposed, with the following objectives:

• use the three dimensional approach to detect protein homology

• assess the impact of dinucleotide bias at the amino acid level on 3D-CGR derived

protein homology and

• use the three dimensional approach to detect shuffled motifs.
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5.1 Three dimensional structure and amino acid

mapping

In order to play the chaos game for protein sequences in three dimensions an icosa-

hedron was chosen to be the geometric model. An icosahedron is a geometric solid

that has twelve vertices, thirty edges and twenty faces. An icosahedron was chosen

because the twenty amino acids of a protein can be represented by the twenty faces

of an icosahedron.

5.1.1 Mapping

The amino acids are mapped onto the faces of an icosahedron in an order based

on the dinucleotide relatedness of codons (see Chapter 2, section 2.1.2). The amino

acids that differ by a single nucleotide in the codons are mapped onto the faces of an

(AA)

(AA)

(CA)

(GA)

(GA)

(GG)

(AG/CG)

(GC)

(AC)
(UC)

(UA)
(UG)

(CU)

(AU)

(GU)

(AU)

(UU)

(CC)

(CA)

(UG)

(a) 2D Representation; Amino acid K represents the
face at the back

V 7

Q

H

1112

6

910
3

4

8

2

1
M

D

YWC A

P

T

S

F

LI

R

E K N

5

(b) 3D Representation

Figure 5.1: a) 2D and b) 3D Representation of an icosahedron with first and second
nucleotide position of codon and its amino acid mapping respectively
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icosahedron that are closer in three dimensional space and the rest of the amino acids

were mapped onto the faces that are further apart. The mapping of amino acids onto

two dimensional and three dimensional representations of an icosahedron is shown in

figure 5.1a and 5.1b.

5.2 Chaos game on an icosahedron

The chaos game was played by taking the center of the icosahedron as the starting

point. When the first amino acid is read from a protein sequence, a point is plotted

halfway between the center of the icosahedron and the center of the face of the cor-

responding amino acid. Subsequent points are plotted halfway between the previous

point plotted and the center of the face of the amino acid read.

Figure 5.2a shows the chaos game of a sample sequence ’MSDEFGHR’ plotted. The

first point is plotted halfway between the center of the icosahedron and the center

of the face corresponding to the amino acid ’M’, the second point is plotted halfway

between the first point plotted and the center of the face corresponding to the amino

acid ’S’, the third point is plotted halfway between the second point and the center of

the face corresponding to the amino acid ’D’; similarly E, F, G, H and R are plotted.

The chaos game on a protein sequence produces a cloud of points in space. The

cloud of points did not reveal any obvious patterns to the naked eye. This could be due

to the length of protein sequences (approx. < 2000) and also due the points being in

3D space. Figure 5.2b is the output of chaos game using an icosahedron when played

on the protein sequence of DNA Polymerase human alpha chain (DPOA HUMAN)

of length 1462. Twenty unique colors have been used to represent the twenty amino

acids.
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M

S

D

E

F

G

H

R

(a) Chaos game on icosahedron for protein sequence ’MSDEFGHR’

(b) Chaos game on icosahedron for protein sequence - DNA Poly-
merase Human Alpha chain

Figure 5.2: Chaos game of protein sequence in three dimension

3D-CGR was expected to reveal useful patterns in protein sequences, since CGR has

been a visual representation technique to study sequence similarities. But, due to the

points being in space no patterns were visible to the naked eye. Therefore, we reduced
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the number of amino acids by grouping them based on conservative substitutions.

The groupings were then mapped onto the 12 vertices of the icosahedron and chaos

game was played. The points generated by the chaos game showed empty regions

near certain groups of aminoacids and more points towards other groups of amino

acids indicating the frequency of occurences of the amino acid groups but, failed

to reveal any visible patterns to the naked eye. Also, we tried to visually study

the points for patterns by rotating the three dimensional figure and projecting the

points onto their corresponding faces but, they were not helpful in revealing any

visible patterns. Therefore, we decided to quantitatively analyse the similarities and

differences between the points produced by different sequences using phylogenetic

trees.

5.3 Distance measure

In this section we quantitatively analyse the relationship between protein sequences

as well as the membership of a given protein to a protein family by calculating the

distance between the clouds of points generated by protein sequences using 3D-CGR.

In order to define a distance measure between the clouds of points produced by any

two sequences, the points produced by the sequences were enclosed inside a cube.

The cube was then subdivided into n × n× n small cubes and the density of points

in each of the small cubes was calculated. Let P and Q be any two sequences, and

s and t be length of the sequences. The density of points in each of the n × n × n

cubes of the sequences P and Q are represented in matrices

Let An×n×n and Bn×n×n be the 3 dimensional matrices

Density DA of (aijk) = (no. of points that fall into the cube aijk)× 1/s

Density DB of (bijk) = (no. of points that fall into the cube bijk)× 1/t
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Dividing by the length of the sequence is to normalize as the protein sequences com-

pared are of various length. The image distance [20] between two sequences P and

Q is defined as

n
∑

i,j,k=1

|DA (aijk)−DB (bijk)|

Two other distances used for sequence comparison in this thesis are the Euclid and

Pearson distance. The Euclid and Pearson distance between sequences P and Q using

density matrices A and B is given by

The Euclid distance
√

√

√

√

n
∑

i,j,k=1

(DA (aijk)−DB (bijk))
2

The Pearson distance

∑n
i,j,k=1DA (aijk)×DB (bijk)−

∑n

i,j,k=1
DA(aijk)×

∑n

i,j,k=1
DB(bijk)

N
√

(
∑n

i,j,k=1DA (aijk)
2 −

(
∑n

i,j,k=1
DA(aijk))2
N

)× (
∑n

i,j,k=1DB (bijk)
2 −

(
∑n

i,j,k=1
DB(bijk))2
N

)

N = n× n× n

5.4 Experimental objectives

To detect protein homology using the 3D-CGR approach, to assess the impact of

dinucleotide bias at amino acid sequence level on 3D-CGR derived protein homology

and to detect shuffled motifs, the following experiments were performed :

• validate tree: The goal of this experiment was to test if the phylogenetic tree

constructed using 3D-CGR can detect protein sequence homology.

• effect of mapping change: The goal of this experiment was to investigate

whether or not varying the mapping of the 20 amino acids on to the 20 faces of
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the icosahedron has an effect on the quality of the phylogenetic trees.

• compare trees: The goal of this experiment was to compare the phylogenetic

trees generated by 3D-CGR with an alignment technique CLUSTALW used for

studying sequence relatedness.

• compare distance measures: The goal of this experiment was to compare

the phylogenetic trees generated by three distance measures and decide which

one gives better results in describing the protein sequence homology.

• assess fractal pattern: The goal of this experiment was to compare the

fractal patterns produced by protein sequences using their fractal dimension.

5.5 Dataset for protein sequence analysis using

3D-CGR

The test data was obtained from the SWISS-PROT Database. Table 5.1 and 5.2

lists all the protein sequences, their length and SWISS-PROT ID used for the test

analysis. The protein sequences were selected such that they were of various lengths,

and from protein families of diverse functionalities.

5.6 Software

The plotting of amino acids and evaluation of distance measures were performed

using Maple 9. X Windows was used for running Maple 9 under the Unix Operating

System. Phylip 3.63 package was used for generating phylogenetic trees to determine

the sequence similarity and differences. Fractal analysis was performed using Java.

CLUSTALW for the test data was run using the default parameter, gap open penalty

of 10 and the BLOSUM matrix.
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Protein Family SWISS PROTID Length
Myoglobin MYG ALLMI(Alligator) 154

MYG CHICK 153
MYG HUMAN 153
MYG MOUSE 153

Hemoglobin HBA ALLMI 141
HBA CHICK 141
HBA HUMAN 141
HBA MOUSE 141
HBA XENTR(Frog) 141
HBA BRARE(Fish) 141

Superoxide dismutase SOD1 ORY SA(Rice) 151
SODC DROME(Fruit Fly) 152
SODC CHICK 153
SODC NEUCR(Fungus) 153
SODC XENLA 150
SODC BRARE 154
SODC HUMAN 153
SODC MOUSE 153
SODC CAEEL(Worm) 158
SODC Y EAST 153

Alcohol dehydrogenase ADH1 Y EAST 347
ADH1 NEUCR 353
ADH1 BACST 337
ADH1 CAEEL 349
ADH1 ORY SA 376
ADHA HUMAN 374
ADHA MOUSE 374
ADHA CHICK 375
ADH1 ALLMI 374

Table 5.1: Protein Family, Swiss-Prot ID and Length of test protein sequences

5.7 Results and discussion

5.7.1 Tree validation

This experiment was performed to test whether the three dimensional CGR could

generate a phylogenetic tree that can identify relatedness of sequences and distinguish
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Protein Family SWISS PROTID Length
Catalase CAT1 CAEEL 524

CATA BACSU(Bacteria) 482
CATA DROME 506
CATA HUMAN 526
CATA MOUSE 526
CATA BRARE 526
CATA ORY SA 491
CAT1 NEUCR 736
CATA Y EAST 515

Methionine adenosyltransferase METK BACSU 400
METK CAEEL 404
METK DROME 408
METK HUMAN 395
METK RAT 395
METK ORY SA 396
METK NEUCR 395
METK Y EAST 381

6 phosphogluconate dehydrogenase 6PGD BACSU 468
6PGD CANAL(Yeast) 517
6PG1 Y EAST 489
6PGD DROME 481
6PGD HUMAN 482
6PGD MOUSE 482

DNA Polymerase DPO1 BACST 876
DPOA DROME 1488
DPOA HUMAN 1462
DPOA MOUSE 1465
DPOA Y EAST 1468
DPOA ORY SA 1243
DPOD CAEEL 1081

Table 5.2: Protein Family, Swiss-Prot ID and Length of test protein sequences (con-
tinued from Table 5.1)

differences between sequences. The method was to use a set of sequences for which the

true phylogenetic tree was known and compare the tree obtained by using 3D-CGR

with the true phylogenetic tree. As in nature the true phylogenetic tree is never known

for sure, we used a starting sequence and simulated its evolution through mutations
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such that the relatedness of the subsequent sequences was completely transparent.In

order to perform this experiment 15 simulated protein sequences of length 352 with

known percentage of relatedness between them were created. Sequence 1 was assumed

to be the root, sequences 2 and 3 were derived from sequence 1 by 16 amino acid sub-

stitutions (in the first half for sequence 2 and second half for sequence 3), sequences 4

and 6 were derived from sequence 2 and sequences 5 and 7 were derived from sequence

3 by the same method, and similarly, sequences 8 and 10 from sequence 4, sequences

12 and 14 from sequence 6, sequences 9 and 11 from sequence 5 and sequences 13 and

15 from sequence 7. At each stage of derivation additional substitutions were made

to the derived sequences as in the first step and the substitutions were made such

that they do not replace an earlier substitution. Figure 5.3a represents the sample

sequence derivation explained above and figure 5.3b represents the true phylogenetic

tree that the simulated sequences were expected to generate. In parallel, the chaos

game was played on the icosahedron and the image distance was calculated for all

pair of sequences from the cloud of points generated by their CGR’s. The distances

were represented in a distance matrix and the phylogenetic tree was generated.

5.7.1.1 Result and interpretation

Figure 5.3c represents the phylogenetic tree generated by 3D-CGR. The phyloge-

netic tree generated by the simulated protein sequences using 3D-CGR was able to

establish sequence relatedness based on the mutational difference in the sequences.

The hierarchical structure of ancestor and children was exact to that of the known

tree. The result shows that the 3D-CGR can identify related sequences and distin-

guish differences between them. Therefore, 3D-CGR as an analysis tool can be used

to study protein sequence relatedness.
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M A F T R S Y C N P I Q G D E H K L V W M A F T R S Y C N P I Q G D E H K L V M     SEQUENCE01

M c F T R k Y C W P I R G r E H v L V W  M A F T R S Y C N P I Q G D E H K L V M     SEQUENCE02

M c f g R k N C W P I R G r E H v L V W  M A F T R S Y C N P I Q G D E H K L V M     SEQUENCE04

M c F T R k Y C W P I R G r E a v L e W  M A F T R S Y C N P I Q G D E H K L V M     SEQUENCE06

M A F T R S Y C N P I Q G D E H K L V W M A c T R S Y f  N P I Q G D h H K d V M     SEQUENCE03

(a) SEQUENCE02 and SEQUENCE03 derived from first and second half of SEQUENCE01,
SEQUENCE04 and SEQUENCE06 derived from SEQUENCE02; substitutions are repre-
sented in lowercase letters

2 3

4 6 5 7

8 10 12 14 9 11 13 15

1

(b) True Tree

>GF2 LEN35
>GF4 LEN35

>GF10 LEN3
>GF8 LEN35

>GF6 LEN35
>GF12 LEN3
>GF14 LEN3

>GF3 LEN35
>GF5 LEN35

>GF9 LEN35
>GF11 LEN3

>GF13 LEN3
>GF7 LEN35

>GF15 LEN3
>GF1 LEN35
(c) Validated Tree by 3DCGR

Figure 5.3: Phylogenetic tree validation - a) Sequence derivation b) Known tree c)
Tree generated by 3D-CGR
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5.7.2 Effect of mapping change

In order to obtain meaningful results we wanted to map the amino acids onto

the faces of an icosahedron in a way that is biologically meaningful. Therefore, for

our working mapping, we maped the amino acids the differ by a single nucleotide

in the codons onto the neighboring faces of an icosahedron and rest of the amino

acids were mapped onto the faces that are further apart. We wanted to test whether

varying the mapping would change the results of our analysis i.e we wanted the

impact of dinucleotide bias at the amino acid level. Consequently, the chaos game was

played on the icosahedron with the above mentioned mapping of amino acids and the

image distance was calculated between the cloud of points for all pairs of sequences.

The image distances between all pairs of sequences was represented as a distance

matrix and a phylogenetic tree was generated based on the distance matrix. Similarly,

phylogenetic trees were generated for four other random mappings of amino acids onto

the faces of an icosahedron. Figures 5.4, 5.5 and 5.6 represents the phylogenetic trees

obtained using the dinucleotide related mapping and two random mappings.

5.7.2.1 Results and interpretation

All the trees generated distinguished the protein families of the test sequences

from one another. Also, the trees displayed species relatedness within families. The

comparison between the three trees is provided in Table 5.3. The dinucleotide related

mapping differs from random mapping 1 and random mapping 2 in the branching of

ADH sequences, in the branch order of the families and in branch length between

closely related species. The difference in branch length and branch order between the

mapping based on dinucleotide relatedness of codons and the two random mappings

can be attributed to the minor effect of dinucleotide biases at amino acid level.
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ADH1 NEUCR
ADH1 BACST

ADH1 CAEEL
ADH1 ORYSA

ADHA HUMAN
ADHA MOUSE

ADH1 CHICK
ADH1 ALLMI

DPOA DROME
DPOA HUMAN
DPOA MOUSE
DPOA YEAST

DPOA ORYSA
DPOD CAEEL
DPO1 BACST

6PGD BACSU
6PGD CANAL

6PG1 YEAST
6PGD DROME

6PGD HUMAN
6PGD MOUSE

CAT1 CAEEL
CATA HUMAN

CATA MOUSE
CATA BRARE

CATA DROME
CATA YEAST

CATA BACSU
CAT1 NEUCR

CATA ORYSA
METK BACSU

METK ORYSA
METK NEUCR

METK YEAST
METK CAEEL
METK DROME

METK HUMAN
METL RAT S

 MYG ALLMI
 MYG CHICK

 MYG HUMAN
 MYG MOUSE

SOD1 ORYSA
SODC YEAST

SODC CAEEL
SODC CHICK

SODC DROME
SODC HUMAN

SODC MOUSE
SODC XENLA
SODC NEUCR

SODC BRARE
 HBA ALLMI

 HBA CHICK
 HBA HUMAN

 HBA MOUSE
HBA XENTR
HBA BRARE

ADH1 YEAST

Figure 5.4: Phylogenetic Tree generated by dinucleotide relatedness mapping using
the Image distance
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Figure 5.5: Phylogenetic Tree generated by random mapping 1 using the Image dis-
tance



58

ADH1 BACST
ADH1 NEUCR

ADH1 CAEEL
 MYG ALLMI

 MYG HUMAN
 MYG MOUSE

 MYG CHICK
 HBA ALLMI
 HBA CHICK

 HBA HUMAN
 HBA MOUSE

HBA XENTR
HBA BRARE

SOD1 ORYSA
SODC XENLA

SODC BRARE
SODC CHICK

SODC HUMAN
SODC MOUSE

SODC DROME
SODC NEUCR
SODC YEAST

SODC CAEEL
ADH1 ORYSA

ADHA HUMAN
ADHA MOUSE

ADH1 CHICK
ADH1 ALLMI

6PGD BACSU
6PGD CANAL

6PG1 YEAST
6PGD DROME

6PGD HUMAN
6PGD MOUSE

METK BACSU
METK HUMAN

METL RAT S
METK NEUCR

METK YEAST
METK ORYSA

METK CAEEL
METK DROME

CAT1 CAEEL
CATA DROME

CATA HUMAN
CATA MOUSE

CATA BRARE
CATA YEAST

CATA BACSU
CATA ORYSA

CAT1 NEUCR
DPOA DROME

DPOA HUMAN
DPOA MOUSE
DPOA ORYSA

DPOA YEAST
DPOD CAEEL

DPO1 BACST
ADH1 YEAST

Figure 5.6: Phylogenetic Tree generated by random mapping 2 using the Image dis-
tance
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Random Mapping 1 Random Mapping 2
Dinucleotide Mapping difference in branching of ADH

sequences, difference in the evo-
lution of protein families and
difference in branch length be-
tween closely related sequences -
(ADHA HUMAN,AHDA MOUSE),
(MYG ALLMI,MY G CHICK)

difference in branching of ADH se-
quences, difference in branch length
between closely related sequences -
(ADHA HUMAN,AHDA MOUSE),
(MYG ALLMI,MY G CHICK)
and evolution of protein families

Random Mapping 1 identical difference in branching of ADH se-
quences

Table 5.3: Pairwise comparisons of the three mapping strategies
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5.7.3 3D-CGR and CLUSTALW phylogenetic tree compari-

son

In order to evaluate the three dimensional CGR method the phylogenetic tree

generated by 3D-CGR was compared with the tree generated by the well known

multiple sequence alignment program CLUSTALW. CLUSTALW and 3D-CGR follow

different approaches to study sequence similarity. In CLUSTALW, the similarity is

initially assessed by pairwise alignment, the alignment of any pair of amino acid

depends on the alignment score and is irrespective of the pair of amino acid that

preceeds it as well as the pair of amino acid that follows it. In contrast, in 3D-CGR a

holistic approach is used, every point in the image depends on the preceding sequence

of points. Phylogenetic trees were obtained for multiple sequence alignment and 3D-

CGR from the dataset. Figure 5.3 and 5.7 represent the phylogenetic trees generated

by 3D-CGR and CLUSTALW.

5.7.3.1 Branch length and protein family evolution

The trees when compared showed that they both were able to distinguish pro-

tein families and identify species relatedness within the familes. But the following

differences were also noted: a) In the CLUSTALW tree, when two sequences are

closely related (example: ADHA HUMAN and ADHA MOUSE), the branch lengths

of the two sequences are almost equal, whereas in the 3D-CGR tree significant dif-

ferences between the branch lengths can be seen; b) the evolution of protein families

in CLUSTALW tree indicate they had diverged long time back whereas in 3D-CGR

tree the evolution of protein families indicate recent divergence and; c) the superoxide

dismuatse family branches off closely to myoglobin and hemoglobin in the 3D-CGR

tree, whereas in CLUSTALW tree, superoxide dismutase does not closely branch off

from myoglobin and hemoglobin families.
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Figure 5.7: Phylogenetic tree generated by CLUSTALW
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The branch lengths in 3D-CGR indicates 3D-CGR could be used measure the

amount of divergence of sequences within protein families. However, we could not

identify the biological significance of the protein family evolution obtained by 3D-

CGR.

5.7.3.2 Shuffled Motif detection

The power of CGR relies on its holistic approach to biological sequences. Every

point on a 3D-CGR depends on its previous point therefore it has a long memory

of the preceding amino acids in a protein sequence, whereas in sequence alignment

the alignment of any pair of amino acid does not depend on the alignment of its

preceding pair of amino acids. Therefore, when two sequences are to be aligned and

there are two different motifs present at different positions in both the sequences (fig

5.8a), the sequence alignment would align based on the best alignment and may not

detect one of the motifs. In contrast, in the case of 3D-CGR, the comparison of

protein sequences is based on the frequency of points in each cubic region, therefore,

3D-CGR is expected to identify motifs better than sequence alignment. In order to

test this hypothesis, a protein sequence - SEQUENCE01 of length 300 was selected

and a new sequence - SEQUENCE02 was obtained from it by shuffling various re-

gions in the SEQUENCE01. Similarly, another sequence SEQUENCE03 was derived

from SEQUENCE01 by performing several insertion/deletions and substitutions, SE-

QUENCE07 was derived by interchanging two big subsequences, and SEQUENCE06

was made to be identical to SEQUENCE01. Fig 5.8b depicts the above example.

Phylogenetic trees for the test sequences together with two other unrelated sequences

SEQUENCE04 and SEQUENCE05 were obtained using 3D-CGR (figure 5.9a) and

CLUSTALW (figure 5.9b). In the tree obtained from CLUSTALW, SEQUENCE03

was identified more closely to SEQUENCE01 than sequence SEQUENCE02 whereas

in 3D-CGR shuffled sequences, SEQUENCE02 and SEQUENCE07 were identified

more closely to SEQUENCE01 than SEQUENCE02 with mutations.
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MSDEFRGHKLPASQWCVVIRTYHGNSPPLIM

MVVIRTYHGNPASQWCSPPLIMSDEFRGHKL

(a) Interchanged subsequence

SEQUENCE03AS FG LMNKLP Q ST V G HIIA WAV AGTAGT GQ PVR

SEQUENCE02AS

5

DVCGY

3

LPPQE

4

ST

1

FGHRI

7

AGAG

6

VHII

8

TAG

2

MNK

SEQUENCE01AS

5

DVCGY

3

LPPQE

4

ST

1

FGHRI

7

AGAG

6

VHII

8

TAG

2

MNK

SEQUENCE07AS AGTAGFGHRIMNKLPPAGQESTDVCGYVHII

(b) Positions marked 1-8 in SEQUENCE01 are interchanged in SE-
QUENCE02, positions marked in SEQUENCE03 are mutated from SE-
QUENCE01, SEQUENCE04 with two big interchanged regions marked

Figure 5.8: Shuffled motif detection

SEQUENCE06
SEQUENCE02

SEQUENCE03
SEQUENCE04
SEQUENCE05

SEQUENCE07
SEQUENCE01

(a) Phylogenetic tree generated by
Chaos for Jumbled Sequences

(b) Phylogenetic tree generated by
CLUSTALW for Jumbled Sequences

Figure 5.9: Shuffled motif detection by chaos and CLUSTALW

The above result indicates that 3D-CGR can identify shuffled motifs/domains bet-

ter than CLUSTALW due to its long memory of preceeding sequences. Therefore,

3D-CGR does not require the motifs/domains to be in the same order between se-
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quences in contrast to CLUSTALW which requires the sequences to have same mo-

tifs/domains in the same order when assessing sequence similarity. The ability of

3D-CGR to identify shuffled motifs/domians between any pair of sequences indicate

it can be used to study protein evolution due to exon shuffling. Exon shuffling is a

process by which motifs/domains have been shuffled to form new proteins.

5.7.4 Distance measure comparison

All the results obtained in section 5.7.1, 5.7.2 and 5.7.3 used the image distance.

We performed some experiments using another two different distances in order to

determine the best distance measure for the output produced by 3D-CGR. The three

distance measures used for the comparison were the Image distance, the Euclid Dis-

tance and the Pearson distance. The three distance matrices containing the distances

between all pairs of protein sequences were calculated using Image, Euclid and Pear-

son distances and their corresponding phylogenetic trees were generated. Figures

5.3, 5.10 and 5.11 represent the phylogenetic trees generated by the Image distance,

Euclid distance and Pearson distance measures.

5.7.4.1 Result and interpretation

The trees generated by the Image distance, Euclid distance and Pearson Distance

using 3D-CGR are all able to identify the related species and their families. The only

difference was that the tree generated by the Pearson Distance was different from the

trees generated by the Image distance and the Euclid distance in branch order and

branch length. Therefore, it is not easy to conclude that one distance is better than

the other.
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Figure 5.10: Phylogenetic tree generated by the Euclid distance
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Figure 5.11: Phylogenetic tree generated by the Pearson distance
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5.8 Fractal analysis on protein sequences

Fractal analysis assesses the fractal patterns produced by a cloud of points gener-

ated by a sequence. The fractal dimension (Box Counting Dimension) is usually used

in assessing the fractal patterns. Since there was no pattern visible to the naked eye in

the cloud points produced by the 3D-CGR, the relationship between sequences was

assessed by calculating box counting dimensions for the cloud of points generated.

The fractal dimensions for various box sizes for the sequences were calculated and the

implementation was done using a Spatial Subdivision Algorithm - Octree.

5.8.1 Octree

An Octree is a tree data structure with eight children used to represent spatial

subdivision. Each node of the octree holds the physical position of the boxes. Figure

5.12 represents the subdivided cube and its Octree. Initially, a single cube is needed

to cover the point cloud, therefore, it is the root node in the Octree. Divide the cube

into eight smaller cubes and determine if any of the cube covers a portion of the point

cloud. If they are, then subdivide those cubes into further smaller cubes. The process

continues for some n times to obtain a better approximation of the fractal dimension.

5.8.2 Fractal dimensions of test sequences

A log-log plot of the number of boxes needed to cover the cloud of points and the

box sizes for each sequence in the data set was performed to analyze the fractal nature

of the sequences. Fig 5.13 shows the log-log plot of the sequences in the data set.
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Figure 5.12: Spatial Subdivision using Octree

5.8.2.1 Result and interpretation

Though the fractal curves generated were similar for protein families, the curves

were dependent on their sequence lengths. Therefore, fractal analysis is not good

method to analyze the relationship between the sequences.
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DNA Polymerase

6PGD & Catalase

ADH & Methionine

Hemoglobin, Myoglobin &
Superoxide dismutase

Figure 5.13: Fractal curve for the test data set
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Chapter 6

Conclusion

This thesis presented the fundamentals of DNA and protein sequences, mathemat-

ical background of chaos and fractals, two dimensional chaos game representation

while also exploring a new approach for CGR to study sequence similarity. Chapter 3

and 4 presented the biological and mathematical background for the thesis. Chapter

4 presented the two dimensional CGR of DNA and protein sequences studied in the

past. Chapter 5, presented the new three dimensional approach to CGR for protein

sequences that provided a holistic approach to sequence analysis

First, in Chapter 2, the biological introduction to the thesis was presented. The

meaning, structure and the functionality of DNA and protein sequences and the

synthesis of protein sequence from DNA were explained. The representation of se-

quences/species relatedness was explained through phylogenetic tree and the analysis

of sequences/species relatedness was explained through the bioinformatic technique,

sequence alignment. Also, the process of multiple sequence alignment was briefly

explained through a widely used program CLUSTALW.

Next, in Chapter 3, the mathematics background to understand the chaos game for

biological sequences was presented. The mathematical background of chaos game for
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generating fractals and its ability to reveal the structure present in the non-random

sequences were explained. Also, the concepts of fractal and the need for fractal

dimension were explained with various examples.

Then, in Chapter 4, the literature on chaos game representation of DNA and protein

sequences in two dimension was presented. A detailed description of the methods,

novel advances and limitations of chaos game on protein sequence in two dimension

was emphasized.

Finally, in Chapter 5, a new approach and results of chaos game representation

of protein sequence in three dimension was given. The selection of the geometric

solid icosahedron to represent twenty amino acids and its structure were explained.

The new three dimensional approach was taken to present a chaos game model by

mapping amino acids on to the icosahedron faces based on the dinucleotide relatedness

of amino acid from codons. The new approach (3D-CGR) was used to study sequence

relatedness, the effect of dinucleotide biases at the amino acid level on the 3D-CGR

deduced protein homology, and shuffled motif detection.

The 3D-CGR was evaluated using phylogenetic trees. Trees generated using 3D-

CGR were able to distinguish protein families and species relatedness within the

families of sequences. Also, the effect of varying the mapping of 20 amino acids on the

faces of the icosahedron analysed using phylogenetic tree showed very small difference

in the branching of protein families and branch lengths of closely related sequences

between the phylogenetic trees generated by random mappings and mapping based

on the dinucleotide relatedness of codon. The comparison of phylogenetic trees of 3D-

CGR and CLUSTALW revealed the significant difference in branch length between

closely related sequences indicated 3D-CGR could be used for measuring the amount

of divergence between sequences within a family. Also, 3DCGR can detect sequence
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relatedness by detecting multiple motifs present in sequences irrespective of the order

of the motifs therefore, it could be a useful tool in studying protein evolution due to

exon shuffling.

The Image distance measure used for generating phylogenetic trees was compared

with Euclid and Pearson distance. All the three distance measures were able to

distinguish protein families and relatedness of species within the families. Finally,

sequence relatedness explored using fractal curves did not provide much information

except the fractal curves generated were similar for protein families.

The patterns produced by 3D-CGR were not visible to the naked eye. Therefore,

it is hoped the future research in 3D-CGR on protein sequences could represent the

’cloud of points’ in space as a structure for visual comparison. Also, the research

could be extended to detect the position of shuffled motifs in 3D-CGR in order to

study the protein evolution due to exon shuffling.
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Appendix A

Algorithm to determine the subsequence represented

by any point in a CGR - Dutta et.al [8]

Input : A point (X,Y) on the CGR.
Output : Sequence that generated the point (X,Y)

Step 1. Let (0,0), (2,0),(2,2) and (0,2) be the vertices of the square and (CX,CY)
represent the center of the square. CX = 1 and CY =1

Step 2. Let (X,Y) be the coordinates of the point whose sequence we want to deter-
mine (within the resolution limit of the monitor ±δ of the monitor).

Step 3. L is the length of the subsequence to be generated.

Let PX and PY be two variables that hold the coordinates of the points as they
are generated. Based on the center coordinate and the resolution limit of the moni-
tor, determine in which quadrant the point belongs and change the center accordingly.
The process is repeated until the X and Y values are equal to the center +/- the res-
olution limit of the monitor. These are given by the following steps:

Step 4. Repeat step 4 L times
if X > CX and Y >CY then

if X > CX + δ then PX = 2
if X < CX + δ then PX = 1
if Y > CY + δ then PY = 2
if Y < CY + δ then PY = 1
if X = CX ±δ or Y = CY ±δ then goto step 6

set CX = CX + (−1)PX (1/2)
set CY = CY + (−1)PY (1/2)
if PX =2 and PY = 2 then N = G
if PX =2 and PY = 1 then N = T
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if PX =1 and PY = 2 then N = C
if PX =1 and PY = 1 then N = A

Step 5. At each step set the value of CX and CY as follows, For the ith step:
CX = CX + (−1)PX (1/2)i

CY = CY + (−1)PY (1/2)i

Step 6. When CX - δ < X < CX + δ and CY - δ < Y < CY + δ then the length of
the sequence is reached or the limit of the resolution of the CGR is reached.

Both CX and CY should reach the resolution limit simultaneously.
The above algorithm can also be used to determine missing sequences as well.
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Appendix B

Algorithm to generate simulated sequence by pre-

dicting the order of nucleotides in a sequence using

the probability of dinucleotide frequency - Dutta

et.al in 1992 [8]

Input : DNA Sequence
Output : CGR of simulated sequence.

Step 1. Determine the frequency of occurrences of dinucleotides from a given se-
quence.

Step 2. Set the length L of the hypothetical sequence to be generated.

Step 3. Randomly choose the first base N(1) of the sequence.

Step 4. Set i = N(1), Set j = 2;

Step 5. Repeat 6 and 7 while j ≤ L

Step 6. Generate a number n between 0 and 1.
if 0 < n < PiA then N(j) = A
if PiA < n < PiT then N(j) = T
if PiT < n < PiG then N(j) = G
if PiG < n < PiC then N(j) = C

where PiA, PiT , PiG and PiC represent the probability of A,T,G,C follow the ith nu-
cleotide.

Step 7. Set i = N(j) and j = j +1.

Step 8. Generate CGR for the hypothetical sequence and compare with the CGR
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of the original sequence.

Step 9. If the CGRs do not match then reset the values of the probabilities.

Guidelines for setting the probabilities were also provided based on trial and error
method, also said, the algorithm could be modified to use the probability occurrences
of tri-, tetra- or k-nucleotides. Therefore, [8] concluded, the sparse region in the
CGRs of vertebrate gene (Fig 4.2) are due to the rare occurrences of the dinucleotide
and not due to any non-random occurrence of single nucleotide.
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