
Appendix A 

 

Data Integrity and Cleaning 

  
 
 
 
 
 
 
 
 
 

Introduction: If you’ve pulled your data off the web, or extracted it from a PDF, or obtained 

records that were entered sloppily by hand, you may find the formatting seems hopelessly mangled. 

If your data has been subject to optical character recognition (OCR)—converting the pixels of 

documents scanned as images into text—the imperfect process has likely introduced numerous 

more errors into the process.  The excitement a journalist may feel when opening a dataset for the 

first time can quickly turn to disappointment when a mangled set of text and numbers with no clear 

structure appears on screen. 

Some lines may end before others. Columns may be uneven and contain different types of data. 

Information that should be in its own column can be mushed together with other data.  

This is “dirty data,” and cleaning it can easily become the most time-consuming and aggravating part 

of any data journalism project and one that can seriously undermine the quality of the journalism 

that results, if not completed correctly. 

The precision of the techniques used in data journalism can create an inherent overconfidence. Sure, 

your Excel spreadsheet calculates percentages effortlessly, but if the underlying information is 

garbled, the analysis you perform is meaningless. In any journalistic work, it’s important to think 

about the different ways the source data might have become dirty.  

Remember that by the time a journalist gets a copy of a data set, it has already been handled by other 

humans, who, as we know, are entirely fallible and prone to errors. Much data is born when 

someone—maybe a government clerk or a parking control officer or a restaurant inspector—sits 

down in front of his or her computer and creates a record in a database.  

Different databases constraint the way their users can enter data. Some may restrict entries in fields 

to a set of options in drop-down menus—perhaps choosing from one of several dozen municipal 

parking infractions or, from another, the race of a homicide victims. That means the data will at least 

be consistent in formatting, even if some selections may be made in error.  



Other databases allow free form entry of long blocks of text to describe, for example, the extent and 

location of mouse droppings in a trendy restaurant. Commonly, most databases allow free text input 

of at least an address—a data chunk that is frequently subject to errors and inconsistencies in 

formatting.   

After the initial creation of the data, many other humans will have gotten their thick fingers on it 

before it reached the reporter’s hard drive. They could have reformatted, edited, updated, sliced, 

diced, severed, truncated and generally munged it in ways that could never be expected.  

Sometimes the errors and inconsistencies will be readily apparent when the data is displayed on-

screen. Someone may have entered street names in the addresses in all uppercase text while 

someone else used upper and lowercase. Street names such as “St. Martin” may variously appear as 

“Saint Martin” or “Saint-Martin.”  These small inconsistencies can affect the analysis of, for 

example, the street in the city with the most parking tickets. Excel would tabulate these a three 

different streets, not one.  

Other errors may be harder to detect at first. An analysis of incidents in a database that is grouped 

by year or month may show that certain time periods appear to have been omitted from the data. If 

any area of town known for traffic problems doesn’t show up in a database of parking tickets, 

there’s probably something wrong with the source records. Or there may be very large values in the 

data, different from most, such as large numbers of fatalities or large dollar values. These outliers, as 

they are called, could point to important stories, or they may be mistakes. 

These are the challenges of dirty data, and this appendix is all about finding and eliminating it. 

 

Part 1. Thinking about the integrity and possible problems with your data. 

In Chapter 2, we defined data for our purposes as structured information arrayed in rows and 

columns to facilitate analysis. That structured nature makes it remarkably easy to reorder, filter and 

summarize the data, to see what patterns and trends emerge. It’s an incredibly powerful and flexible 

reporting and research tool. 

But if we’re not careful, all that flexibility and power can make trip us up. If we don’t know how and 

where to look for them, we may miss errors and inconsistencies in the data that could undermine 

our analysis or make it just plain wrong. Such errors and inconsistencies will not always be obvious 

just by looking at the data on the screen.  

The first thing to keep in mind is that there is nothing particularly special about information stored 

in a table of data. While it is organized in a systematic way, it is still just information collected by 

humans or automated systems built by humans. Those humans make a whole series of choices when 

collecting the data, choices about what information to collect and what to take a pass on, and about 

how to record the information that is collected, what categories to create, and so on. Those choices 

directly affect the analysis you will be able to do, and influence the conclusions you will reach. 

For example, data on dispatch and arrival times of emergency responders such as paramedics and 

firefighters might seem on the surface to be precise and unimpeachable. A time is given for the time 

the personnel were dispatched to the scene and for when they arrived; it might be down to the 



second. But how does it get into the database? A dispatch time might be entered automatically by a 

computer system when the dispatch message goes out, but how is the arrival recorded? If it relies on 

the emergency personnel reporting their arrival times by radio, they might be delayed doing so, 

preferring to deal with a life-threatening emergency first and reporting the time of arrival later. The 

resulting data could be inaccurate some or all of the time, but you’d never know that just looking at 

it. 

Even if data is collected accurately, collection practices or definitions may change over time, with 

more or different data collected in subsequent months or years. Fields may be added to a dataset, 

but not populated. Or assumptions underlying data may change so that information in a field may 

not be strictly comparable to data added to the same field years earlier. 

Therefore, some of the first questions you need to ask yourself when working with anything but the 

simplest data are who collected it, why did they collect it, and how did they go about it? The more 

you understand the data, and its potential strengths and limitations, the more useful and accurate 

you can make your analysis. 

Understanding how the data was collected can also reveal where the data may be incomplete or in 

error. For example, if data is first entered on paper forms and later entered into a database by clerks, 

there is potential for transcription error, even if the data entry system uses safeguards such as 

dropdown lists of possible entries in a data field. Is the data double checked after it is entered? If so, 

does the same person who entered it check it, or another? The forms themselves could be filled out 

incorrectly, or the wrong information entered. Even information entered through handheld 

terminals is only as good as the choices made by the person entering it. In some cases, information 

may be gathered by automated means, such as a parking ticket terminal that automatically generates 

a location from GPS coordinates, but even then, machines can be improperly calibrated or 

malfunction. There are just so many ways bad data can get into a system. The very fact that data is 

collected and organized by people, and the systems they create, makes it vital that you understand 

how they go about the work. 

Errors can also occur when data is released to a journalist. An agency may inadvertently leave out 

some rows from a dataset, rendering it incomplete.  

There are steps you can take to root out such errors. One of the most important is to compare 

summary details of the data with publicly available figures. As an example, does the total value of 

contributions in a political donations dataset add up to the figures in official reports? Does the total 

number of bylaw infractions in a municipal dataset equal the total reported in information given to 

city council? If the numbers aren’t close, you’ll want to figure out why. Do the addresses of highly 

ticketed parking ticket locations reported in a database match up with real locations that you can 

find? Do the totals you get from summary analysis of a database make sense to people who are 

familiar with the sector you are investigating? A simple and effective technique is to run the results 

of your analysis past the agency that gave you the data. This can reveal not only errors in your 

analysis, but errors made by the agency in providing the data. 

Another way to look for errors is by sorting different data columns. Such a sort can reveal unlikely 

large or small values, such as salaries in the millions in a small city or zero dollar values for contracts. 

Of course, if the values turn out to be valid, you might have an even better story. 



Yet another step is to talk to outside groups that also deal with the data or the subject area, such as 

lobby groups, public interest organizations, academics, labour unions, and the like.  Such individuals 

can help you determine if what you are seeing in the data makes sense, as well as help you identify 

likely weaknesses in the data collection, organization, or presentation.  

The key goal is to become as expert as you can about the data and the subject area. This can go a 

long way toward identifying hidden weaknesses and invisible errors. At the very least you need to 

understand what the errors might be; and in the most extreme instance, you may decide that a 

dataset is simply unreliable. In that case, your story might be about how the data is collected, rather 

than on an analysis of the contents. 

 

Part 2, cleaning up inconsistent and dirty data. 

Other errors and inconsistencies will be more apparent, the data more obviously dirty. Data in some 

fields may be missing some of the time; entries in a text field may be spelled inconsistently or have 

leading or trailing spaces that make Phoenix with a space after it and Phoenix without a space after it 

look like different cities to the computer; dates or numbers may be in text fields, making numeric 

analysis impossible; data in a column in a spreadsheet may have mixed formatting, such as a mix of 

properly formatted dates and text entries that just look like dates; data may even end up in the 

wrong columns, leaving a mash that requires extensive manipulation before it can be analyzed. 

These kinds of problems need to be corrected before a useful and reliable analysis can be done. 

We’re going to use the rest of this appendix to introduce you to a number of techniques that can be 

used to correct such errors. 

There is no single tool for cleaning up data. In fact, a lot of cleaning can be accomplished using tools 

that we have already seen, such as spreadsheets and relational database programs. There is also a 

specialized tool called Open Refine that can take some of the tedium out of the job. And for the 

toughest problems, regular expressions can transform unorganized text into neat rows and columns. 

We’ll be looking at each one. 

 

Finding the problems 

The first step is a bit of sleuthing, to find problems in your data. This work is most easily done in a 

spreadsheet or database program, though you can also explore your data in the Open Refine 

application we will discuss a little later. 

If your file is already in a spreadsheet worksheet, or database table, go ahead and open it.  If it’s in a 

format such as delimited text (csv, tab delimited, etc) or JSON, you’ll want to import it into a 

spreadsheet or database table first.  If you want to convert a JSON file to an Excel table, a great tool 

that’s easy to use can be found at https://konklone.io/json/  Just paste your JSON into the top 

window, and CSV appears in the bottom window. It’s not perfect, but when it works more quickly 

than writing a custom script in a language such as Python. 

We’ll use Excel for the examples here, but SQL queries can be used just as easily for these tasks. 

We’ll assume you’ve already read chapter 4 and its associated online tutorials. 

https://konklone.io/json/


Let’s take a look at the Excel file of expenditures on credit cards issued by Halifax Regional 

Municipality, downloadable from the companion website to The Data Journalist.  

 

The data doesn’t look too bad at first glance, but even a cursory look shows one issue; the two dates 

are in text format without any separators between the year, month and day. You can tell they are in 

text format because the data is aligned to the left side of the cell. We’d probably like to get the dates 

into a proper date format so we can do things such as extract the month or year using date 

functions. 

We can also see a few of what appear to be inconsistencies in names in the Merchant Name field. A 

quick way to determine if there are many such inconsistencies is to sort the column in ascending 

order. 

 



As we scroll down, we can definitely see inconsistencies. Such inconsistencies will make summary 

analysis difficult because each unique spelling in the field will be treated as if it were a different 

merchant. 

An even more effective way of looking for this kind of problem is to create a pivot table, counting 

how many unique instances there are.  

 

Now we can see that there are four different spellings of the Payzant hardware store, plus how many 

there are. 

If you are unsure how to create a pivot table, see Chapter 4, as well as the tutorial on pivot tables on 

the companion website. 

We’ve already got two cleaning tasks to do. Let’s keep looking for more problems. 

It’s always a good idea to sort any numeric fields, including currency fields, to see if there are any 

unlikely or obviously errant values in them. So let’s sort the Amount field in our credit card data. 

We’ll start with ascending order. 



 

We see some negative values here, but notice that they seem to be paired with the Reversal column. 

These appear to be refunds, and the values look plausible. Let’s sort the other way, in descending 

order. 

 

This turns up a duplicated header row. Not a huge deal, but worth eliminating to get the data into 

the best shape. 

Alright, let’s use another file to look at a couple of more problems that can crop up. It’s called 

misalignedcolumns.xlsx, and it’s also downloadable from the companion site. 



 

Again, a quick glance shows an issue right away; some of the data columns aren’t aligned properly. 

This can happen when importing CSV files that may have missing or extra delimiters; it can also 

happen with data scraped from the web, extracted from PDF files, or pasted from HTML tables. If 

we sort the Contract Value column in descending order, we can get a sense of how many rows may 

be affected. 

 

It seems quite a few. 



If you switch to the second worksheet in this file, NumbersasText, you can immediately see an issue 

with the Contract Value column; the values are in text format. This is a similar problem to that 

which we saw with the dates in the credit card data, but the solution is different. If we tried to sort 

on these dollar values, they would sort in alphabetical, rather than numeric format: 

 

As you can see, $13,2565,004.04 appears in the middle of values of about $13,000, because the sort 

is done as if the numbers were words.  

Perhaps of even greater concern, you can’t do math with numbers entered as text. 

There are other, more subtle, problems you can face. For example, you might find supposedly 

unique identifiers, or even entire rows, duplicated. Or you may find a unique person or business has 

more than one unique identifier.  

 

Fixing the problems 

These are pretty typical problems that you may face with data, though the set of examples here is far 

from exhaustive. Let’s turn to some methods we can use to take this dirty data, and run it through 

the laundry. For each problem, we’re going to show you one or more ways you can fix it.  



In this Excel sheet of government contracts, some of the cells are misaligned with the columns. If 

you’d like to practice, you can download the sheet contracts.xlsx from the companion website. 

TYr

 

If you tried to sort or summarize the data, for example creating an Excel pivot table of total contract 

values by Description of Work, you’d get incomplete or illogical results with so dozens of work 

description entries in the contract value field, and the corresponding contract values off beyond the 

table to the right. Fortunately, the fix is simple. We’ll use Excel to sort the table to bring all of the 

misaligned cells together, then shift data to the left to fill blank cells. 

To begin, the first thing you should do is add a new column A with a sequential ID number. To do 

that, insert a new column by highlighting column A, right clicking (Command click on a Mac) and 

choosing Insert from the context-sensitive menu. Once you have added the new column, manually 

type 1 and 2 into cells A2 and A3, and then fill down to the bottom of the sheet by highlighting cells 

A2 and A3, then placing the mouse in the bottom right hand corner of A3 and either double 

clicking, or dragging down.  

 



This will fill the sequence to the bottom. 

 

This step is important as it will allow us to reset the sheet to its original order, if we need to do so, 

once we have cleaned up the misaligned cells. 

The next step is to sort the column with the blank cells, which is column C. Place your mouse 

anywhere in the column, then right click (command click on a Mac) and choose Sort on the Data 

ribbon (data menu on older versions of Excel for Mac). 

 

This will sort the column in ascending order. You could also choose descending order. The goal is 

to sort the sheet so all of the blank cells end up either at the top or bottom of the sheet. 



4 

With the blank cells highlighted, right click on the highlighted cells, and choose Delete. Excel will 

ask if you want to shift the cells to the left, down, right or up. Choose left to shift everything to the 

right toward the left, realigning the misaligned cells with the correct columns. 

 

Now, re-sort the sheet by your ID column, and the sheet will return to its original order, with all the 

misaligned cells corrected. 



 

 

Fixing dates in odd text formats. 

You’ll recall when we looked at the credit card data, that the dates in the table were entered as text, 

such as 20150101, in year, month, day order. While Excel is forgiving and will try to convert 

numbers stored as text to actual numbers before doing math, in this case it will treat the numbers as 

numbers in the millions, rather than as dates, producing the wrong answers. Database programs will 

generate errors if you try to do any math on text. 

We can use some Excel string functions, to extract out the elements of the dates, then reassemble 

them in a layout Excel recognizes as a date. 

To begin, let’s insert a new column to the right of the Stmt Date column, and format it as a date 

column in year, month, day format (e.g. 2016-10-30). 

Next, we’ll write a formula using string functions in the first data cell in the new column: 

 

The formula uses the LEFT function to grab the first four characters of the date, joins or 

concatenates that with a hyphen, then uses the MID function to grab the fifth and sixth characters 

of the date, and again concatenates that with a hyphen, and finally uses the RIGHT function to grab 

the last two characters, representing the day. The & character is the concatenation operator in Excel. 

You can also write this, if you prefer, as: 



 

The result is the same. 

Now, we’ll copy the formula down the column and go through the same steps for the Trans Date 

column. 

 

We now have properly formatted dates, though in one of its quirks, Excel is still displaying the new 

columns aligned to the left, as if they were text. A quick bit of math, however, shows they are 

actually dates. If you really want to align them to the right, you can use the Align Right icon in the 

Alignment area of the Excel home ribbon. 

This work could easily be done in a database program, using string functions to update a new Date 

format column with the reorganized contents of the original date column. 

Another common problem in Excel is having a number column that is formatted as text. If you are 

lucky, correcting this will be a simple matter of changing the number format of the column to a 

number type, such as currency, or Number. But sometimes this has no effect, and the column 

remains stubbornly text despite your best efforts. Here, we see the same data we used in the last 

example. We’ve tried to sort on the contract value column, but it sorts in alphabetical order. 



 

One trick that will often work to solve this problem is to multiply the reluctant column by 1. 

First, change the cell formats to Number, currency or whatever type you want. To do this, highlight 

the whole column, right click (or Command click on a Mac), then choose Format Cells from the 

context-sensitive menu. In the Number tab of the Format Cells dialogue, pick the number format 

you want. 

Now, in a new column to the right, in the cell to the right of the first number, enter a formula to 

multiply the cell by 1. 

 

More often than not, this will cure the problem, as we see here. 

 

Now, fill the formula to the bottom of the sheet, and you have numbers where before you had text. 



 

 

Fixing inconsistent values 

Probably the most time-consuming task in data cleaning is eliminating inconsistencies in spelling 

within fields in a data table. Poor data entry protocols will often result in different people entering 

the same information in different ways. You might see “California” also entered as “CA” or “Calif.”. 

In a database or spreadsheet program, the three values will be seen as completely different entities, 

even though we as users know from experience that the three refer to the same place. 

In a small dataset, it’s realistic to go through and correct the entries by hand. But as soon as you 

have many hundreds, thousands, hundreds of thousands or even millions of rows to fix, you need 

something a little more powerful. This kind of cleaning can be accomplished in different ways, and 

you can either use a spreadsheet or database program, or a special tool called Open Refine, originally 

developed by Google, but now an open source project. 

For our example data, we’ll use data on use of credit cards issued to employees of Halifax Regional 

Municipality in Halifax, Nova Scotia. You can download the data from the companion website. 

There are many spelling issues in the vendor field. For example, for Air Canada, the ticket number is 

always listed, and Air Canada is spelled two ways, both of which would make it difficult to sum up 

the total spent with Air Canada. 



 

We’ll look at three ways of fixing the data, using Excel, using a database program, and using Open 

Refine. We’ll start with Excel, our familiar Swiss Army Knife from Chapter 4. 

As a first step, let’s add a new column to our worksheet, directly to the right of the existing 

Merchant Name field. We can call it Clean_Merchant. Next, sort the original |Merchant Name field 

in ascending order. Your sheet should end up something like this: 

 

As an example, let’s scroll down to the entries for Air Canada. In the new, blank column, enter AIR 

CANADA in the cell directly to the right of the first Air Canada entry, AIR CAN  0140851268724. 



 

Now, copy the new AIR CANADA entry down until you reach the last Air Canada entry in the 

original Merchant Name column. 

 

The ability of Excel to quickly fill down values makes this an effective method for cleaning 

worksheets with many inconsistencies of the same name. You only need to enter cleaned entries for 

those names for which there are inconsistent spellings. To add the remaining entries to the new 

column, sort the sheet by the new column so all the blank cells in it are at the top or bottom, then 

highlight and copy all of the remaining original entries and paste them into the remaining blank cells 

in the new column. 

 

Cleaning using SQL 

You can also do bulk data cleaning using SQL in a database program. If you have only a limited 

number of entries to clean, you can follow essentially the same process outlined above for Excel, 

adding a new column and then populating it with new values. The easiest way to do that is to write 

an UPDATE query to update the new column WHERE certain values exist in the original column. 

For example: 

UPDATE HfxCreditCards 

SET Clean_Merchant = “AIR CANADA” 

WHERE Merchant_Name LIKE ‘AIR CAN%’ 



For a refresher on SQL syntax for UPDATE queries, see Chapter 5. 

If you have a lot of entries to fix, it can be more efficient to create an intermediary, lookup table 

containing all of the unique entries in the original column, add a new blank column to the 

intermediary table and clean it up, and finally joining the intermediary table back to the main table 

using the values in the original field for the join, updating the original table. 

Let’s walk through the process with our credit card data. First we create the intermediary table. Here 

is the query, shown in the Navicat front end for MySQL: 

 

Remember that if you are running this query in Access, the SQL is slightly different. See Chapter 5 

of The Data Journalist for a refresher. 

The next step is to modify the new table to add a new column for the clean entries. Here we are 

adding the new field in Navicat: 

  

If you are unsure how to modify a table, see the tutorials on creating tables and adding data, also 

available on the companion website for The Data Journalist. 

The new table now has two fields: 

 



Now, we can begin to update the values in the Clean_Merchant field. We could do it manually, but 

that could take a long time. By using SQL UPDATE queries, we can update many rows 

simultaneously, and by making only small changes to the query each time, we can move the process 

along quickly. 

For example, to update the almost 500 AIR CAN and AIR CANADA entries, we can use this query, 

as seen in Navicat: 

 

By using the LIKE operator, we capture all of the entries that begin with AIR CAN, with this result: 

 

Similarly, we could update the six entries for Best Buy, seen in this image: 

 



With this query: 

 

By using the % wildcard between BEST and BUY we capture all variations of Best Buy, those with 

and without a space between the two words. Remember that Microsoft Access SQL in its default 

mode uses the * wildcard instead of the % wildcard. 

 

Continue cleaning until you have provided clean versions of all entries for which there was more 

than one variation. You can leave entries that have only one spelling as is as we will take care of 

those in the next step. 

Once you have finished populating the Clean_Merchant field, you can copy all of the entries for 

which there was only one spelling to the new column using this suntax: 

UPDATE merchantcleanup 

SET Clean_Merchant = `Merchant Name`  

WHERE Clean_Merchant IS NULL 

This query will populate the Clean_Merchant field with the original value but only when there isn’t 

already a value in Clean_Merchant. The cleanup table is now ready to use. 

 



The final step is to update the original table. First, add a new column to the original credit card table, 

and call it Clean_Merchant. It likely makes most sense to put this new column directly to the right of 

the existing merchant table. 

Now, use a SQL UPDATE query to update the new Clean_Merchant column in the original table 

with the values from the Clean_Merchant field in the cleanup table. 

UPDATE Halifaxcreditcards1314 a, merchantcleanup b 

SET a.Clean_Merchant = b.Clean_Merchant 

WHERE a.`Merchant Name` = b.`Merchant Name` 

The new, clean field can now be used for queries. 

 

 

Cleaning with Open Refine 

You can download Open Refine from openrEfine.org.  It requires Java to be installed on your 

computer (note that Java is not the same as JavaScript). 

Open Refine can work with several conventional data formats, including delimited text files, Excel 

spreadsheet files, JSON, XML and others. 

You start Open Refine on a Windows PC by double clicking on the openrefine.exe executable file. 

On a Mac, drag Open Refine into the Applications folder, then double click on it. As long as the 

required Java version is present on your system, you will see a terminal window open, followed by 

your default web browser. Open Refine behaves like a web server that runs on your machine. You 

access it through a browser. 

To begin, you need to create a project. For this example, we will open the file 

HalifaxCreditCards1314.xlsx, available for download from the Data Journalist companion site. It’s 



an Excel file of use of credit cards by staff of Halifax Regional Municipality in 2013 and 2014. Make 

sure you keep a backup copy of your original data. 

Download the file, and then click on Browse to traverse your file system to find the file.  

 

 

When you click on Next, Open Refine will work for a while, then present you with a screen like this. 

 



 

In this dialogue, you get a preview of what your data looks like, as well as some options as to how 

Open Refine should handle, or parse, the data. In our case, we will leave the options as they are, as 

Open Refine has correctly identified that it is an Excel file, and we do want the first line to be 

treated as a column header line. WE also don’t want to ignore or discard any rows, or limit the 

number of rows to be loaded.  

When we are certain of the settings, we’ll click on Create Project at the top right of the dialogue. It 

may take a few moments for Open Refine to complete this task. When it’s done, you’ll see the top 

5,10,25 or 50 rows of the data, depending on the option you choose. 

 

As we discussed earlier, one of the big issues with this dataset is that the vendor name column 

contains many variations for the same vendor. If we want to do accurate and/or complete summary 

calculations, we need to correct that. OpenRefine is perfectly suited for the task. 

We’ll use the text facet tool, which we open by clicking on the arrow at the top of the column we 

wish to clean,in this case merchant name, and choosing Text facet, as seen below. 

 



You may receive an error message if you have a large number of rows. You can choose to increase 

the number of distinct items that can be shown, although the more you choose, the slower Open 

Refine may work. 

In our case, we see we have 6227 choices, or distinct values, in that column.  

 

What Open Refine does here is it groups the values in the chosen column, in this case Merchant 

Name. This is exactly the same operation as Excel performs when it creates a pivot table or an SQL 

database query does when you use GROUP BY or DISTINCT. See chapters 4 and 5 respectively for 

a discussion of Excel and database programs. 

You will notice that Open Refine also provides you with a count of how many times that entry 

appears in the column.  

Since our problem is to get rid of multiple variations of the same name, and this is easy with Open 

Refine. Let’s say we wanted to clean up the various entries for Dominos Pizza. Depending on how 

we wish to proceed, we either need to narrow down to three variations, one for each store number, 

or just one. This would depend on whether we want to be able to look at each store as a separate 

entity, or Domino’s Pizza as one overall vendor. Let’s go with the latter, Domino’s as a single entity. 



 

If you hover your mouse over one of the choices, you will see you are given the option to either 

Edit or Include the entry.  

 

We’ll choose “edit.” This will open a small window that allows us to edit the entry, so it just reads 

DOMINO’S PIZZA. 

 

After making the change, and ensuring you have deleted the trailing space following PIZZA, click 

apply. You’ll see the first entry has been changed. 



 

Follow the same steps for the other four DOMINO’s entries, being sure to use the same spelling 

each time. You’ll see what were once five different spellings have been collapsed into one, which 

you will see now has 8 entries.  

 

You can use the same procedure to clean up additional entries.  

If you want to see which entries appear the most often, you can choose to sort the list by the count 

by clicking the “count” link at the top of the list of entries. You may choose to concentrate your 

early cleaning efforts on entries that appear most often. 

 

 



You can also clean your data using Open Refine’s cluster tool, which will automatically cluster 

variations that appear similar to one another. This can be an enormous time saver. Begin by clicking 

on the Cluster button, as seen in the previous illustration, to bring up the clustering dialogue. 

 

Open Refine automatically groups similar-looking entries into clusters that you can rename by 

entering a new, common, value in the New Cell Value box. 

Before we do that, though, let’s take note of the two dropdown text boxes at the top of the screen, 

labled “Method” and “Keying Function.” Generally speaking, you should probably stick to the Key 

Collision method, because the alternative, Nearest Neighbor, requires a great deal of math, and can 

be very slow (see https://github.com/OpenRefine/OpenRefine/wiki/Clustering-In-Depth for an 

in-depth discussion of this issue). However, it is definitely worth trying out the different keying 

functions for the Key Collision method. They can produce markedly different results. As an 

example, switching to colongne phonetic as the keying method is much more effective in collecting 

together the dozens of entries for Air Canada and Air Can—each one has a different ticket number. 

 

https://github.com/OpenRefine/OpenRefine/wiki/Clustering-In-Depth


 

To consolidate all of these under a single entry, we put the new entry we want into the text box on 

the right, making sure to enter the same thing, AIR CANADA, for both the AIR CANADA and 

AIR CAN entries, click the check boxes for each cluster, and then at the bottom of the dialogue 

click on Merge Selected and Re Cluster (or Merge Selected and Close, if you are done). Here is the 

dialogue just before we take that final step. 

 



In one step we can clean up almost 500 purchases with Air Canada. If we close the clustering 

dialogue, and select AIR CANADA in the facet list, we can see that all of the entries have a single 

value under Merchant Name, making proper analysis possible. 

 

It is important to remember that everything we have been doing we have been doing inside the 

browser. The original data file has not been altered. As well, if our computer crashes, or our Browser 

stops responding or closes, we will lose our work.  

To generate a permanent copy of our cleaned data, we can either export a copy of the project, which 

we can reopen later, or we can export as an Excel file, a comma delimited file, an HTML file, or and 

OpenOffice format spreadsheet. To do this, click on the Export button at the top right of the 

screen, and choose one of the options. 

 



 

 We will export as CSV file because we can then open it in Excel, an SQL database or a GIS 

program. 

You can also use the Custom Tabular Exporter, which gives you far more control over the output 

file. In the content tab, you choose what to export, including which fields and for date/time fields, 

the format. Pay special attention to the date/time formats. We are choosing the Full Locale format 

so the dates are exported to the operating system’s native full date/time format. 

 

Once you are ready to export your file, click on the download tab to download a file to your 

computer and Upload to upload a Google spreadsheet or Fusion Table. The download dialogue 

allows you to determine the type of export file, the type of delimiter for a delimited text file, the line-

ending character for a delimited file and the character encoding to be used for text files. 



 

When you have completed your choices, click on Download to initiate the download. The procedure 

for uploading to Google spreadsheets or Fusion Tables is different. After choosing either Google 

sheets or Fusion Tables, you will have to give Open Refine permission to access your Google 

account. At this time, this functionality does not work properly. A workaround is to download as a 

delimited text file or Excel sheet, then upload to Google Sheets or Fusion Tables through the 

Google Drive interface. 

Open Refine has a number other data manipulation tools that can come in handy when preparing 

your data for analysis. You can use it as an alternative to a spreadsheet or database TRIM function, 

to remove leading and trailing whitespace from columns of data, to convert all the text in a column 

to uppercase, lowercase or title (normal) case, to convert numbers stored as text to numbers, to 

convert dates stored as text to date format, and numbers and date to text format. To access these 

functions, click on the arrow at the top of the column you wish to modify, then choose Common 

transforms and the function you wish to use. 



 

These tools mostly duplicate functionality you will find in a spreadsheet or database program, but it’s 

always good to have options. 

 

Giving data structure with Regular Expressions 

A messy data structure can be cleaned up in Excel, a database program, or Open Refine, but what to 

do with data that has little or no structure at all? What if it’s just a giant blob of text? When you copy 

data from a webpage, it’s not uncommon for all the coding to disappear once you’ve pasted it into 

Excel. The delimiters needed to keep the columns separate can get lost in translation and all the 

fields will appear in the first column. 

Or maybe you want to conduct a data analysis on large blocks of texts, such as transcripts of 

political debates or legal proceedings.  

In these cases, you need to create structure to your data where there is none.  

To do this, you must find patterns in the text that indicate where a delimiter should appear.  

  



Consider a long list of names and addresses that has no delimiters and nothing to break up the data 

into fields: 

Paul Jackson 148 Bexhill Close London ON N6E 3B1  

J David A Jackson 3800 Yonge St Toronto ON M4N 3P7  

Dennis Jackson 188 Green Brighton ON K0K 1H0  

A D Jackson 10250 Kennedy N Brampton ON  

Malcolm Jackson 89 Winchester St Toronto ON M4X 1B1  

G Jackson 3130 Council Ring Rd Mississauga ON L5L 1L4  

Rod Jackson 445 Simon Fraser Dr Thunder Bay ON P7C 4Z9  

James C B Jackson 415 Norfolk St S Simcoe ON N3Y 2W8  

Lawrence D A Jackson ON  

Robert Jackson 82 Viscount Ave Ottawa ON K1Z 7M9  

Paul Jackson ON  

D Jackson 19 Wood St Trenton ON K8V 5P6  

B Jackson 1545 Rue Deroy Saint-Calixte QC J0K 1Z0  

Each street address is a different length and begins with a different number. There’s no way to know 

where to put in a delimiter.  You could go through every line and manually insert tabs in the right 

places, but that isn’t practical with a long list.  

Instead, you need to find a way to automate this task.  

Fortunately, with addresses, there is typically a common pattern:  a street number followed by a 

street name and one of the common suffixes, such as Avenue, Road or Boulevard. 

Then, usually, this is followed by the name of the municipality and then a postal code or zip code. 

Breaking a blob of address data into fields is such a common data journalism task that makes it 

worthwhile to learn how to use a powerful set of pattern search tools called Regular Expressions.  

Also called RegEx, these functions are supported by commonly used (and open-source) text editors 

that have long been used by computer programmers and should be in every data journalist’s 



toolkit.  To use Regular Expressions for cleaning up data, you should download and install one of 

the many open-source text editors that support them.  On a Mac, TextWrangler is without peer. On 

Windows, try Notepad++. 

Most of us know how to do a conventional search-and-replace in Microsoft Word or other text-

based programs, using CTRL-F (or Command-F on a Mac) to locate a string of text and substitute it 

with something else.  

These functions are typically limited to specific strings of text. If you want to change every reference 

to “Minister of Defence” to “Minister of Finance,” these work fine. 

But imagine the common task of trying to find postal codes within a long file of addresses. You can 

search for K2P 3C4, but that will match only that exact postal code and not others. The power of 

Regular Expressions is that they can locate patterns of numbers and letters, not specific text.    

To find a postal code using RegEx, we just need to write an expression that matches the pattern, 

which is:  a capitalized letter, a number, another capitalized letter, a hyphen or space, then a number, 

a capitalized letter and another number. 

In RegEx, the phrase [A-Z] will match for capitalized letter (include the square brackets). Similarly, 

[0-9] will match any digit.   

So, to find any postal code using RegEx, we would open up the text in TextWrangler or Notepad++ 

and search for the expression [A-Z][0-9][A-Z]-[0-9][A-Z][0-9]. 

Suppose we want to put tabs on either side of the postal codes, so that when we import the text to 

Microsoft Excel, they will appear in their own column.   

If we replaced with only tabs, using the expression \t, we would lose the postal code our pattern 

located. We need to include it in the replace phrase.  

But since we don’t know the exact postal code we’re matching, we need use to a RegEx function 

called “backreferences”, which store patterns we’ve already matched to be recalled later. These are 

created simply by putting parentheses around all or part of the search pattern, then recalled in the 

replace expression with \1, with the number referring to order in which it was stored.  

Imagine that our data is formatted with an empty space in the middle of the postal code, and we 

want to replace it with a hyphen. We can’t replace every space in the document with hyphen, but 

only those within the pattern of postal codes.  

We would search for ([A-Z][0-9][A-Z]) ([0-9][A-Z][0-9]). This will store the first three characters 

as one backreference, and then the second three as another.  

So let’s search for that, then replace with the expression \t\1-\2\t.   

http://notepad-plus-plus.org/


For every postal code, this expression will replace it with a tab, followed by the first three characters 

of the original postal code that were stored as a back expression, then the hyphen we want, then the 

last three characters, and another tab.  

If we felt like it, would could have reversed the order of the postal code by replacing it with the 

phrase \t\2-\1\t.  That would turn “M4C-5T5” into “5T5-M4C”. 

RegEx are particularly powerful matching fuzzy text phrases. Suppose we’re working with a messy 

list of addresses that had been manually entered by different users. Some wrote out the province as 

“Ontario”, but others wrote “Ont.”, others “Ont.” or “On.”, and some others typed it 

as  “Ontaroi.”  

We can replace all these by telling RegEx to find a capitalized “O” and lower-case “n” and whatever 

comes after it, and replace the whole mess with the proper “Ontario”. 

For this expression, we’ll use a period .  which is RegEx’s wildcard version of the asterisk and 

matches any character or space. We’ll also use a plus sign +, which tells the RegEx to find any 

number of the thing comes before it, and the question mark ? which tells our expression to stop 

looking soon as it hits something else we specify—in this case, a space  .   

So, we search for On.+? (with a space after the ?) and replace with \tOntario\t.  We can throw in a 

\r for a hard return at the end of the expression if that’s the end of the record.  

By learning to combine multiple characters and wildcards into Regular Expressions, we can take 

messy unstructured data and turn it into beautifully structured rows and columns.   

It can also take large blocks of text that appear to have little structure and turn them into structured 

data. They could be used to take, for example, thousands of pages of House of Commons 

transcripts and transform them into a database of quotes organized by MP, party, data and even 

subject.  

The key to adding structure in large blocks of texts is to find ways that different types of data is 

indicated. In a transcript of House of Commons debates, it may be indicated by the MP’s name 

followed by her or her constituency set off with parentheses. Replace the ( and ) characters with 

tabs, then import the data in Excel and the data should be structured to allow sorting my MP, 

constituency and statement. 

The Ottawa Citizen used this technique In 2011 when the New Democrat Party MPs were 

filibustering—speaking at length without giving up the floor—to delay the Conservative 

government’s legislation that would force Canada Post employees back to work. 

The Citizen copied the textual transcripts of the parliamentary debates, called Hansard, then added 

structure by inserting tabs using Regular Expressions. 

http://www.regular-expressions.info/


A quick fun analysis of these data found the one MP who spoke the most and calculated that the 

total number of words he uttered in the filibusters to be 432,143. If he speech during the filibuster 

was printed in book form, it would about 55 per cent of the length of the King James Bible and 77 

per cent of Tolstoy’s War and Peace. 

Conclusion 

Data analysis is a powerful tool in the journalist’s toolkit, but if the data is dirty, the analysis may 

produce junk results. Taking the time to clean your data can be the difference between an award-

winning story and a huge correction. It’s an essential part of the process. 


