
Chapter 4 
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4.2 Kinematics of WMRs 
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4.1.1 Context of Measurement 
• Police says “you were going 30 m/s southbound on I-

279”.  
• Any measurement in physics lacks meaning without 

several contextual elements: 
– a unit system (e.g. meters, seconds) 
– a number system (e.g. base 10 weighted positional) 
– a coordinate system (e.g. directions north, east) 
– a reference frame to which the measurement is ascribed (e.g. 

your car). 
– a reference frame with respect to which the measurement is 

made (e.g. the earth). 
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Coordinate Systems 
• Conventions for representation of physical quantities.  

– Any set of quantities that fixes all degrees of freedom of a 
system. 

– Cartesian systems represent vectors by projections onto three 
orthogonal axes. 

– The Euler angle definition expresses the three degrees of 
rotational freedom. 

• Mathematical laws alone govern conversion from 
coordinate system to coordinate system. 

• Conversion of coordinates does not change the 
magnitude or direction of a measurement - only the way 
you describe it. 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 5 



Reference Frames 
• Allows us to reconcile the differences in observations of the same 

property of an object by two observers with different states of 
motion. 
– Laws of physics are necessary to convert among frames of reference (i.e to 

predict a measurement made by one observer from those of another).  
– A reference frame is a real physical body. The state of motion of such a body 

distinguishes it from other frames of reference.  
• A phenomenon, when observed from one frame of reference, may 

or may not look the same when observed from a second frame of 
reference.  

• Two frames are equivalent with respect to a measurement when 
the measurement is the same in both frames. If they are not 
equivalent, a method of converting between the frames of 
reference is often available. 
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Coriolis 
• Cauchy recommended him to a 

job at Ecole Polytechnique. 
• Introduced the terms 'work' 

and 'kinetic energy' with their 
present scientific meaning 

• Best remembered for “Sur les 
équations du mouvement relatif 
des systèmes de corps (1835)” 
which introduced the Coriolis 
force. 

• Also wrote a mathematical 
theory of billiards! 
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4.1.2.1 Mutually Stationary Frames 
• Motion of particle can 

be expressed wrt either 
frame. 

• Position vectors are 
related: 
 

• Differentiate wrt time: 
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4.1.2.2 Galilean Transformation 
Translating (Const V) Frames 

• Motion of particle can be 
expressed wrt either frame. 

• Position vectors are related: 
 

• Differentiate wrt time: 
 

• Frames are equivalent for 
acceleration: 
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4.1.2.3 Rotating Frames 
• When two frames are rotating with respect to each other, 

something must be accelerating. 
• Let ω denote angular velocity of m frame with respect to 

f frame. 
• Lets predict measurements of observer in f given those of 

observer in m. 
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4.1.2.3 Coriolis Equation 
• Coriolis Equation (aka Transport Theorem) relates 

derivatives of same vector by both observers. 
 
 
 

• 𝑢𝑢 is any vector (position, velocity, acceleration, 
force) 

• 𝜔𝜔 is angular velocity of moving frame wrt fixed 
one. 
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4.1.2.4 Velocity Transformation 
• Positions add by vector addition. 

 
• Time derivative in fixed frame. 

 
 

• Apply Coriolis Equation to 2nd term on right. 
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4.1.2.4 General Velocity Relation 
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4.1.2.5 General Acceleration Relation 
• Apply to velocity relation 
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4.1.2.5 General Acceleration Relation 
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4.1.3 Attitude Stability Margin Estimation 
• Staying upright 
• Keeping contact with terrain. 
• Important when: 

– Lifting heavy loads 
– Turning at speed 
– Operating on sloped terrain 

• Many vehicles do one or more of these things. 
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Liftoff Criterion 
• Preventing liftoff will 

prevent rollover. 

• For liftoff, issue is the 
direction of the net 
noncontact force vector 
acting at the cg 

– Any unbalanced moment 
about any tipover axis. 
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4.1.3.1 Proximity to Wheel Liftoff 
• Place a 2 axis accel right at the cg.  

• BUT: 
– CG may not be accessible. 
– It may move due to: 

• articulations 
• payload changes 
• changing human passengers. 
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4.1.3.1 Proximity to Wheel Liftoff 
• Define the specific 

force acting at the cg: 
 
 

• An accelerometer can 
measure specific force 
but it cannot usually be 
placed at the cg. 
– Therefore transform it. 
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4.1.3.1 Proximity to Wheel Liftoff 
Transformation 

• Use earlier result: 
– f frame in inertial (i) frame. 
– m frame is sensor (s) frame. 
– o frame is cg ( c ) frame 

• Simply substitute the letters to 
get: 
 

• Subtract the gravity vector from 
both sides to get the real (s) and 
transformed (c) accelerometer 
readings 
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4.1.3.3 Computational Requirements 
• Geometry 

– Location of the center of 
gravity (cg). 

– Convex polygon formed by the 
wheel contact points. 

• Forces 
– Gravity vector. 
– Inertial forces being 

experienced due to 
accelerated motion. 
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4.1.4 Recursive Transformation of States of Motion 

• Suppose we have a sequence of 
frames numbered: 
– 1,2…k,k+1…n 

• Their motions can be related by the 
results just derived… 
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4.1.4.1 Conversion to Coordinatized Form 
• Recall: 
• Where: 

 
 

• Also, we can write the transport theorem in 
matrix form: 
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4.1.4.1 Conversion to Coordinatized Form 
• Now, use this to rewrite Equation 4.18. 
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4.1.4.1 Conversion to Coordinatized Form 
• Define the notation: 

 
 

• Then, previous position, velocity and acceleration 
results can be written as: 
 

• Typically  
– 𝑥𝑥𝑘𝑘+1𝑘𝑘  represent articulations 

– 𝜌𝜌𝑜𝑜𝑘𝑘 represent state of motion of each frame 
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4.1.4.2 General Recursive Forms 
Velocity Transform 

• Consider just the velocity transform: 
 

 
• We will write this compactly as: 

 
 

• Where H is defined as it occurs in Equation 4.23. 
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4.1.4.2 General Recursive Forms 
Acceleration Transform 

• Consider just the acceleration transform: 
 

 
• We will write this compactly as: 

 
 

• Where H, Ω etc. are defined as they occur in 
Equation 4.25. 
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4.1.4.3 The Articulated Wheel 
• Let n=k+1 have a maximum value 

of 2.  
– Two intermediate frames relate 

zeroth frame (0) to object frame (o). 

• Write Equation 4.24 twice: 
 
 

• Substitute second into first: 
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4.1.4.3 The Articulated Wheel 
• For acceleration, write Equation 

4.26 twice: 
 
 

• Substitute second into first: 
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4.1.4.4 Velocity Transforms for Articulated Wheel 

• Let these frames be defined: 
– 0: world frame (w) 
– 1: body frame (v) 
– 2: suspension/steering (s) 
– o: wheel contact pt (c) 

• Then equation 4.27 becomes: 
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4.1.4.4 Velocity Transforms for Articulated Wheel 

• Under the same substitutions 
Equation 4.29 becomes: 
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Summary 
• Measurements require a context to be precisely meaningful.  
• A coordinate system and a reference frame are different. 
• Two frames may or may not be equivalent for measuring velocity 

and higher derivatives. 
• The Coriolis Equation provides a general coordinate-free 

mechanism to differentiate any vector attached to a moving frame 
of reference. 
– General transformations of position, velocity, and acceleration can be 

derived from it. 
• Basic stability margin estimation is based on lift-off and an 

acceleration transformation. 
• A two step recursion is sufficient to model the velocity and 

acceleration kinematics relating the wheel contact point motion to 
the motion and articulation of a WMR. 
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4.2.1.1 Pure Rotation of a Point 
• Suppose particle p moves in 

pure rotation. 
 

• Differentiate: 
 

• … orthogonal to 
• In other “words” 
 
• Magnitudes are:  
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Pure Rotation of a Particle on a Body 
• Now consider a particle p 

on a body executing 
general planar motion. 
– Not pure rotation… 

• The body has some some 
V and ω at the position of 
p. 

• For some world frame W, 
define the ratio. 
 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 39 

r vp
w ω⁄=

�⃑�𝑣𝑝𝑝  

𝜔𝜔  
𝑝𝑝  

𝑞𝑞  



Pure Rotation of a Particle on a Body 
• Rewrite this as: 

 
• This is Eqn A! Hence we can 

interpret ‘r’ as the radius to 
an instantaneous center of 
rotation (ICR) for point p 
located r units in orthogonal 
direction to v. 

• In vector terms: 
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Pure Rotation of a Particle on a Body 
• Consider a neighboring point q: 

 
• Differentiate in the world 

frame: 
 
 

• But the last term is: 
 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 41 

0 ICR 

𝑟𝑟𝑝𝑝  

�⃑�𝑣𝑝𝑝  

𝜔𝜔  
𝑝𝑝  
𝑞𝑞  



Pure Rotation of a Particle on a Body 
• Substituting: 

 
• Substitute for the first term: 

 
 
• That is: 
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4.2.1.2 Jeantaud Diagrams 
• Fixing just the directions of the velocities of two points on a 

body determines the ICR. 
• Hence, all steered wheels of a vehicle must be consistent to 

avoid wheel slip and energy loss. 
• Wheels do not slip if they move along the normal to the line to 

the ICR. 
• If all wheels are consistent, any two directions and one velocity 

can be used to predict the motion. 
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4.2.1.3 Rolling Contact 
• Wheels normally have up to 

two degrees of freedom. 
– steer 
– drive 

• Angular and linear velocity 
are related as follows … 
 
 
– under a no slip assumption: 
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4.2.1.4 Rolling without Slipping 
• This constraint means �̇�𝑥 and �̇�𝑦 are 

not independent. 
– They must be aligned with the 

direction of pure rolling. 

• The dot product … 
– �̇�𝑥 �̇�𝑦 ∙ s𝜓𝜓 −c𝜓𝜓 = 0 

• Written out … 
– �̇�𝑥s𝜓𝜓 − �̇�𝑦 c𝜓𝜓 = 0 
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Pfaffian Constraints 
• Define the wheel configuration vector: 

 
 

• And the weight vector: 
 
 

• The constraint in Pfaffian form is: 
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Nonholonomic Constraints 
• Typically (not always) wheels cannot move 

sideways (without slipping). 
• Creates severe mathematical difficulties. 
• Most wheels, and therefore most WMR’s, are 

subject to these nonholonomic constraints. 
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Definition 
• Such constraints are “nonholonomic” because they 

cannot be put in the form: 
 

• The integral would be: 
 
 
 

• Even when 𝜓𝜓(𝑡𝑡) = 𝑡𝑡2, these integrals are the well-
known Fresnel integrals which have no closed form 
solution. 
– And hence cannot be reduced to the form 𝑐𝑐(𝑥𝑥) = 0. 
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4.2.2 Character of WMR Models 
• Unlike manipulators, the simplest models of how 

mobile robots move are differential equations 
that are: 
– Nonlinear 
– Underactuated 
– Constrained  

• Much of the difficulty of mobile robots can be 
traced to this fact. 
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Motion Prediction 
• The process of integrating the differential 

equations for known inputs can be called motion 
prediction. It is important for: 

• estimating state in odometry, Kalman filter system models, 
and more generally in pose estimation of any kind. 

• predicting state in predictive control 
• simulating motion in simulators. 

 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 52 



Rate Kinematics 
• For (WMRs), we care about the rate kinematics.  
• Of basic interest are two questions.. 

 
– For state estimation 

 
 

– For control 
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Frame Conventions 
• w: world 
• v: vehicle 
• s: steer 
• c: contact point. 
• Regard vehicles as rigid 

bodies (no suspension). 
– Except for steering and wheel 

rotation. 
• Contact point moves on 

wheel and on floor but it is 
fixed in wheel frame. 
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Offset Wheel Equation 
• Key assumption: wheel 

contact point is fixed to 
wheel. So…  

• Eqn 4.30 becomes 
 
 

• When s and c frames are 
coincident 
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4.2.2.1.1 Wheel Steering Control 
• For steering, note that direction 

(not magnitude) of s frame and c 
frame velocities must be parallel. 

• So, propagate velocity from v 
frame to s frame:  
 

• Express in vehicle coordinates and 
extract steer angle: 
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4.2.2.1.2 Wheel Speed  Control 
• Assuming  

– a) the wheels are steered appropriately  
– b) no slip 

• Then, the magnitude of wheel speed is also the 
component in the forward direction. 

• Compute it in vehicle coordinates where posn 
vectors are easy to get: 

 
• That gives the wheel speed as 
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4.2.2.2.1 Wheel Sensing 
• Wheel linear speed: 

 
 
 

• Wheel speed components: 
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4.2.2.2.2 Multiple Offset Wheels 
• Write the offset wheel equation in vehicle 

coordinates: 
 

• This is of the form: 
 
 

• If we write one of these for each wheel, stack em 
up, the result looks like: 
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• Result from last slide again is: 
• The LHS and steer angles are known, and this is 

normally overdetermined, so use the left 
pseudoinverse: 
 
 
 
 

4.2.2.2.2 Multiple Offset Wheels (Inv) 
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WMR Kinematics 
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Example: Differential Steer (Inv) 
• Let ‘l’ and ‘r’ denote left and right wheel 

frames. 
• The dimensions are: 

 
 

• In body frame, velocities have only an x 
component. Equation 4.40 reduces to: 
 
 
 
 

• Two equations giving sideways wheel 
velocities were of the form vy=0, so these 
were not written. 
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Example: Differential Steer (Fwd) 
• Inverse kinematics again are: 

 
 
 

• This is easy to invert: 
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Example: Ackerman Steer 
• Special mechanism ensures wheels are lined up 

properly. 
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Example: Ackerman Steer (Inverse) 
• Position vector to front wheel in 

body (vehicle) frame: 
 

• Cross product skew matrix: 
 
 

• Wheel equation in body frame 
reduces to: 
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Example: Ackerman Steer (Inverse) 
• Last result is of the form: 

 
• Written out: 

 
 

• So, the angle of the front wheel 
can be computed: 
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Example: Ackerman Steer (Fwd) 
• Inverse kinematics again are: 

 
 
 

• This is easy to invert: 
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Example: Generalized Bicycle 
• Models any vehicle whose wheels 

do not slip. 
• Wheel position vectors: 

 
• Skew matrix for wheel i: 

 
 
• For a single wheel (i): 
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Example: Generalized Bicycle 
• Models any vehicle whose wheels 

do not slip. 
• Gather equations for both wheels: 

 
 
 
 

• Forward kinematics is again LPI: 
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x 
y 

𝛾𝛾1 

𝛾𝛾2 

Wheel Equation 
(This case)  

(from last slide) 



Example: 4 Wheel Steer (Inv) 
• Position vectors in body (vehicle) frame: 
 
• Offset vectors in body frame: 

 
 

• Equations for each wheel are: 
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4 Wheel Steer 

d 

x 
y 

4 

2L 

𝛾𝛾2 

1 

2 

2W 𝛾𝛾1 

𝛾𝛾4 

3 

4 

𝛾𝛾3 
NB: There are typos in the book for these eqns. 

(4.62) 



Example: 4 Wheel Steer (Inv) 
• All together, these are of the form: 

 
 
 
 
 
 

• Forward kinematics is simple: 
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4 Wheel Steer 

d 

x 
y 

4 

2L 

𝛾𝛾2 

1 

2 

2W 𝛾𝛾1 

𝛾𝛾4 

3 

4 

𝛾𝛾3 



3D Case 
• Works even if some vectors are out of the plane.  
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Out of plane 

Wheel Equation 



Video 
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Outline 
• 4.1 Moving Coordinate Systems 
• 4.2 Kinematics of Wheeled Mobile Robots 

– 4.2.1 Aspects of Rigid Body Motion 
– 4.2.2 WMR Velocity Kinematics for Fixed Contact Point 
– 4.2.3 Common Steering Configurations 
– Summary 
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Summary 
• The kinematic equations governing the motion of 

wheeled vehicles are those of planar rigid bodies. 
– Its all about the ICR. 

• Rate kinematics for wheeled mobile robots are 
pretty straightforward  
– in the general case in 3D. 

• The inverse problem is often overdetermined.  
– This is solved like any overdetermined system. 
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