CHAPTER 2

Process Manager

This chapter describes the Process Manager, the part of the Macintosh Operating System
that provides a cooperative multitasking environment. The Process Manager controls
access to shared resources and manages the scheduling and execution of applications.
The Finder uses the Process Manager to launch your application when the user opens
either your application or a document created by your application. This chapter
discusses how your application can control its execution and get information—for
example, the number of free bytes in the application’s heap—about itself or any other
open application.

Although earlier versions of system software provide process management, the Process
Manager is available to your application only in system software version 7.0 and later.
The Process Manager provides a cooperative multitasking environment, similar to the
features provided by the MultiFinder option in earlier versions of system software. You
can use the Gest al t function to find out if the Process Manager routines are available
and to see which features of the Launch function are available.

You should read the chapter “Introduction to Processes and Tasks” in this book for an
overview of how the Process Manager schedules applications and loads them into
memory. If your application needs to launch other applications, you need to read this
chapter for information on the high-level function that lets your application launch other
applications and the routines you can use to get information about open applications.

To use this chapter, you need to be familiar with how your application uses memory, as
described in the chapter “Introduction to Memory Management” in Inside Macintosh:
Memory. You should also be familiar with how your application receives events, as
discussed in the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

This chapter provides a brief description of the Process Manager and then shows how
you can

= control the execution of your application

= get information about your application

= launch other applications or desk accessories

= get information about applications launched by your application

= generate a list of all open applications and information about each one

= terminate the execution of your application

About the Process Manager

The Process Manager schedules the processing of all applications and desk accessories. It
allows multiple applications to share CPU time and other resources. Applications share
the available memory and access to the CPU. Several applications can be open (loaded
into memory) at once, but only one uses the CPU at any one time.

About the Process Manager 2-3

labeuel\ ssao0id
N

CHAPTER 2

Process Manager

Note

For a complete description of how the Process Manager schedules
applications and desk accessories for execution, see the chapter
“Introduction to Processes and Tasks” in this book. O

The Process Manager also provides a number of routines that allow you to control the
execution of processes and to get information about processes, including your own. You
can use the Process Manager routines to

= control the execution of your application
= get information about processes

= launch other applications

= launch desk accessories

The Process Manager assigns a process serial number to each open application (or desk
accessory, if it is not opened in the context of an application). The process serial number
is unique to each process on the local computer and is valid for a single boot of the
computer. You can use the process serial number to specify a particular process for most
Process Manager routines.

When a user opens or prints a file from the Finder, it uses the Process Manager to launch
the application that created the file. The Finder sets up the information from which your
application can determine which files to open or print. The Finder information includes a
list of files to open or print.

In system software version 7.0 and later, applications that support high-level events (that
is, that have the i sHi ghLevel Event Awar e flag set in the ' SI ZE' resource) receive the
Finder information through Apple events. The chapter “Apple Event Manager” in Inside
Macintosh: Interapplication Communication describes how your application processes
Apple events to open or print files.

Applications that do not support high-level events can call the Count AppFi | es,
Cet AppFi | es,and O r AppFi | es routines or the Get AppPar ns routine to get the
Finder information. See the chapter “Introduction to File Management” in Inside
Macintosh: Files for information on these routines.

Using the Process Manager

2-4

This section shows how you can use the Process Manager to
= obtain information about open processes
» launch applications and desk accessories

= terminate your application

Using the Process Manager

CHAPTER 2

Process Manager

Getting Information About Other Processes

You can call the Get Next Pr ocess, Get Front Process, or Get Curr ent Process
functions to get the process serial number of a process. The Get Cur r ent Pr ocess
function returns the process serial number of the process currently executing, called the
current process. This is the process whose A5 world is currently valid; this process can
be in the background or foreground. The Get Fr ont Pr ocess function returns the
process serial number of the foreground process. For example, if your process is running
in the background, you can use Get Fr ont Pr ocess to determine which process is in the
foreground.

The Process Manager maintains a list of all open processes. You can specify the process
serial number of a process currently in the list and call Get Next Pr ocess to get the
process serial number of the next process in the list. The interpretation of the value

of a process serial number and of the order of the list of processes is internal to the
Process Manager.

labeuel\ ssao0id
N

When specifying a particular process, use only a process serial number returned by a
high-level event or a Process Manager routine, or constants defined by the Process
Manager. You can use these constants to specify special processes:

CONST
kNoPr ocess = 0; {process doesn’'t exist}
kSyst enPr ocess =1, {process belongs to COS}
kCurrent Process = 2; {the current process}

In all Process Manager routines, the constant KNoPr ocess refers to a process that
doesn’t exist, the constant kSyst enPr ocess refers to a process belonging to the
Operating System, and the constant kCur r ent Pr ocess refers to the current process.

To begin enumerating a list of processes, call the Get Next Pr ocess function and specify
the constant kNoPr ocess as the parameter. In response, Get Next Pr ocess returns the
process serial number of the first process in the list. You can use the returned process
serial number to get the process serial number of the next process in the list. When the
Get Next Pr ocess function reaches the end of the list, it returns the constant

kNoPr ocess and the result code pr ocNot Found.

You can also use a process serial number to specify a target application when your
application sends a high-level event. See the chapter “Event Manager” in Inside
Macintosh: Macintosh Toolbox Essentials for information on how to use a process serial
number when your application sends a high-level event.

You can call the Get Pr ocessl nf or mat i on function to obtain information about any
process, including your own. For example, for a specified process, you can find

= the application’s name as it appears in the Application menu
the type and signature of the application

= the number of bytes in the application partition
= the number of free bytes in the application heap
the application that launched the application

Using the Process Manager 2-5

CHAPTER 2

Process Manager

The Get Processl nf or mat i on function returns information in a process information
record, which is defined by the Pr ocessl| nf oRec data type.

TYPE Processl nfoRec =

RECORD
processl nf oLengt h:

pr ocessNane:
processNunber :

processType:
processSi gnat ure:
pr ocesshbde:
processLocati on:
processSi ze:
processFreeMem
processLauncher:

processLaunchDat e:
processActi veTi ne:

processAppSpec:

END;

Longl nt; {length of process info record}
StringPtr; {nane of this process}
ProcessSeri al Nunber;

{psn of this process}

Longl nt; {file type of application file}
CSType; {signature of application file}
Longl nt; {'SI ZE' resource flags}

Ptr; {address of partition}

Longl nt ; {partition size}

Longl nt ; {free bytes in heap}

ProcessSeri al Nunber;
{process that |aunched this one}

Longl nt; {time when | aunched}
Longl nt; {accumul ated CPU ti ne}
FSSpecPtr ; {l ocation of the file}

You specify the values for three fields of the process information record:

processl nf oLengt h, pr ocessNane, and pr ocessAppSpec. You must either set the
pr ocessName and pr ocessAppSpec fields to NI L or set these fields to point to
memory that you have allocated for them. The Get Pr ocessl| nf or mat i on function
returns information in all other fields of the process information record. See “Process
Information Record” on page 2-16 for a complete description of the fields of this record.

Listing 2-1 shows how you can use the Get Next Pr ocess function with the
Get Processl nf or mat i on function to search the process list for a specific process.

Listing 2-1 Searching for a specific process

2-6

FUNCTI ON Fi ndAProcess (signature: OSType;

BEG N

Fi ndAPr ocess

VAR process: ProcessSerial Nunmber;
VAR | nf oRec: Processl nfoRec;
myFSSpecPtr: FSSpecPtr ;

nyName: Str31): Bool ean;

. = FALSE; {assunme FALSE}

process. hi ghLongOf PSN : = 0;
process. | owLongOf PSN : = kNoProcess; {start at the begi nning}

I nf oRec. processl nfoLength : = sizeof (Processl nf oRec);

Using the Process Manager

CHAPTER 2

Process Manager

I nf oRec. processNane : = Name;
I nf oRec. processAppSpec : = nyFSSpecPtr;

WHI LE (Get Next Process(process) = noErr) DO
BEG N
| F Get Processl nformati on(process, InfoRec) = noErr THEN
BEG N
I F (1 nfoRec. processType = Longlnt (' APPL')) AND
(I nfoRec. processSi gnature = signature) THEN
BEA N {found the process}
Fi ndAProcess : = TRUE;
Exi t (Fi ndAProcess);
END;
END;
END; {WH LE}
END;

The code in Listing 2-1 searches the process list for the application with the specified
signature. For example, you might want to find a specific process so that you can send a
high-level event to it.

Launching Other Applications

You can launch other applications by calling the high-level LaunchAppl i cati on
function. This function lets your application control various options associated with
launching an application. For example, you can

= allow the application to be launched in a partition smaller than the preferred size but
greater than the minimum size, or allow it to be launched only in a partition of the
preferred size

» launch an application without terminating your own application, bring the launched
application to the front, and get information about the launched application

= request that your application be notified if any application that it has launched
terminates

Earlier versions of system software used a shorter parameter block as a parameter to the
_Launch trap macro. The _Launch trap macro still supports the use of this parameter
block. Applications using the LaunchAppl i cat i on function should use the new
launch parameter block (of type LaunchPar anBl ockRec). Use the Gest al t function
and specify the selector gest al t OSAt t r to determine which launch features are
available.

Most applications don’t need to launch other applications. However, if your application
includes a desk accessory or another application, you might use either the high-level
LaunchAppl i cat i on function to launch an application or the
LaunchDeskAccessory function to launch a desk accessory. For example, if you have
implemented a spelling checker as a separate application, you might use the

Using the Process Manager 2-7

labeuel\ ssao0id
N

CHAPTER 2

Process Manager

LaunchAppl i cat i on function to open the spelling checker when the user chooses

Check Spelling from one of your application’s menus.

You specify a launch parameter block as a parameter to the LaunchAppl i cati on
function. In this launch parameter block, you can specify the filename of the application
to launch, specify whether to allow launching only in a partition of the preferred size or
to allow launching in a smaller partition, and set various other options—for example,
whether your application should continue or terminate after it launches the specified

application.

The LaunchAppl i cat i on function launches the application from the specified file and
returns the process serial number, preferred partition size, and minimum partition size if
the application is successfully launched.

Note that if you launch another application without terminating your application, the
launched application does not actually begin executing until you make a subsequent call
to WAi t Next Event or Event Avai | .

The launch parameter block is defined by the LaunchPar anBl ockRec data type.

TYPE LaunchPar anBl ockRec =

2-8

RECORD

reservedl:
reserved2:

I aunchBl ockl D:

| aunchEPBLengt h:

[aunchFi | eFl ags:

| aunchCont rol Fl ags:
| aunchAppSpec:

| aunchProcessSN

| aunchPr ef erredSi ze:
| aunchM ni munsi ze:

| aunchAvai | abl eSi ze:
| aunchAppPar anet er s:

END;

Longl nt;

I nt eger;

I nt eger;

Longl nt;

| nt eger;

LaunchFl ags;
FSSpecPtr ;
ProcessSeri al Nunber;
Longl nt;

Longl nt;

Longl nt ;

AppPar anet ersbtr;

{reserved}

{reserved}

{ext ended bl ock}
{length of bl ock}
{app’ s Finder flags}
{launch options}
{location of app’s file}
{returned psn}
{returned pref size}
{returned mn size}
{returned avail size}
{hi gh-level event}

In the | aunchBl ockl Dfield, specify the constant ext endedBl ock to identify the
parameter block and to indicate that you are using the fields following it in the launch

parameter block.

CONST
ext endedBl ock

Using the Process Manager

= $4C43;

{ext ended bl ock}

CHAPTER 2

Process Manager

In the | aunchEPBLengt h field, specify the constant ext endedBl ockLen to indicate
the length of the remaining fields in the launch parameter block (that is, the length of the
fields following the | aunchEPBLengt h field). For compatibility, you should always
specify the length value in this field.

CONST
ext endedBl ockLen = si zeof (LaunchPar anBl ockRec) - 12;

The | aunchFi | eFl ags field contains the Finder flags for the application file. (See the
chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for a
description of the Finder flags.) The LaunchAppl i cat i on function sets this field for
you if you set the bit defined by the | aunchNoFi | eFl ags constant in the

I aunchCont r ol Fl ags field. Otherwise, you must get the Finder flags from the
application file and set this field yourself (by using the File Manager routine

FSpCet FI nf o, for example).

In the | aunchCont r ol FI ags field, you specify various options that control how the
specified application is launched. See the section “Launch Options” on page 2-15 for
information on the launch control flags.

You specify the application to launch in the | aunchAppSpec field of the launch
parameter block. In this field, you specify a pointer to a file system specification record
(FSSpec). See the chapter “File Manager” in Inside Macintosh: Files for a complete
description of the file system specification record.

The LaunchAppl i cat i on function sets the initial default directory of the application to
the parent directory of the application file.

If it successfully launches the application, LaunchAppl i cat i on returns, in the
I aunchPr ocessSNfield, a process serial number. You can use this number in Process
Manager routines to refer to this application.

The LaunchAppl i cat i on function returns the | aunchPr ef err edSi ze and

| aunchM ni nunti ze fields of the launch parameter block. The values of these fields
are based on their corresponding values in the ' SI ZE' resource. These values may be
greater than those specified in the application’s' SI ZE' resource because the returned
sizes include any adjustments to the size of the application’s stack. See the chapter
“Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials for information on how
the size of the application stack is adjusted. Values are always returned in these fields
whether or not the launch was successful. These values are 0 if an error occurred—for
example, if the application file could not be found.

The LaunchAppl i cat i on function returns a value in the | aunchAvai | abl eSi ze
field only when the menful | Er r result code is returned. This value indicates the largest
partition size currently available for allocation.

The | aunchAppPar anet er s field specifies the first high-level event sent to an
application. If you set this field to NI L, the LaunchAppl i cat i on function
automatically creates and sends an Open Application event to the launched application.
(See the chapter “Apple Event Manager” in Inside Macintosh: Interapplication
Communication for a description of this event.) To send a particular high-level event to

Using the Process Manager 2-9

labeuel\ ssao0id
N

CHAPTER 2

Process Manager

the launched application, you can specify a pointer to an application parameters record.
The application parameters record is defined by the data type AppPar anet er s.

TYPE AppParaneters =

RECORD
t heMsgEvent : Event Recor d; {event (high-level)}
event Ref Con: Longl nt; {reference constant}
nmessagelengt h: Longl nt ; {length of buffer}
nessageBuf f er: ARRAY [0..0] OF SignedByte;

END;

You specify the high-level event in the fieldst heMsgEvent , event Ref Con,
nessagelengt h, and nessageBuf f er.

Listing 2-2 demonstrates how you can use the LaunchAppl i cat i on function.

Listing 2-2 Launching an application

PROCEDURE LaunchAnApplication (nySFReply: StandardFil eReply);

VAR
myLaunchPar amns: LaunchPar anBl ockRec;
| aunchedPr ocessSN: ProcessSeri al Nunber;
| aunchErr: CSErr;
pref Si ze: Longl nt ;
m nSi ze: Longl nt ;
avail Si ze: Longl nt;
BEG N
W TH nyLaunchPar ans DO
BEG N
| aunchBl ockl D : = ext endedBl ock;
| aunchEPBLengt h : = ext endedBl ockLen;
| aunchFi | eFl ags : = 0;
| aunchControl Fl ags : = launchConti nue + | aunchNoFi | eFl ags;

| aunchAppSpec : = @vySFReply.sfFile;
| aunchAppParaneters := NL;
END;
I aunchErr := LaunchApplication(@ryLaunchPar ans);

prefsize : = nmyLaunchParans. | aunchPref erredSi ze;
m nsi ze : = nyLaunchPar ans. | aunchM ni nunSi ze;
I F launchErr = noErr THEN
| aunchedProcessSN : = nyLaunchPar ans. | aunchProcessSN
ELSE I F | aunchErr = nenful | Err THEN
avai | Si ze : = myLaunchPar ans. | aunchAvai | abl eSi ze

2-10 Using the Process Manager

CHAPTER 2

Process Manager

ELSE
DoError (I aunchErr);
END;

Listing 2-2 indicates which application file to launch by using a file system specification
record (perhaps returned by the St andar dGet Fi | e routine) and specifying, in the

I aunchAppSpec field, a pointer to this record. The | aunchCont r ol Fl ags field
indicates that LaunchAppl i cat i on should extract the Finder flags from the application
file, launch the application in a partition of the preferred size, bring the launched
application to the front, and not terminate the current process.

By default, LaunchAppl i cat i on brings the launched application to the front and
sends the foreground application to the background. If you don’t want to bring an
application to the front when it is first launched, set the | aunchDont Swi t ch flag in the
I aunchCont r ol Fl ags field of the launch parameter block.

In addition, if you want your application to continue to run after it launches another
application, you must set the | aunchCont i nue flag in the | aunchCont r ol Fl ags
field of the launch parameter block. For a complete description of the available launch
control options, see “Launch Options” on page 2-15.

If you want your application to be notified about the termination of an application it has
launched, set the accept AppDi edEvent s flag in your' SI ZE' resource. If you set this
flag and an application launched by your application terminates, your application
receives an Application Died Apple event (' aevt' ' obit'). See “Terminating an
Application” on page 2-11 for more information on the Application Died event.

Launching Desk Accessories

In system software version 7.0 and later, the Process Manager launches a desk accessory
in its own partition when that desk accessory is opened, giving it a process serial
number and an entry in the process list. The Process Manager puts the name of the desk
accessory in the list of open applications in the Application menu and also gives the
active desk accessory its own About menu item in the Apple menu containing the name
of the desk accessory. This makes desk accessories more consistent with the user
interface of small applications.

Although you can use the LaunchDeskAccessor y function to launch desk accessories,
you should use it only when your application needs to launch a desk accessory for some
reason other than the user’s choosing a desk accessory from the Apple menu. Beginning
in system software version 7.0, the Apple menu can contain any Finder object that the
user decides to add to the menu. When the user chooses any such user-added item from
the Apple menu, your application should respond by calling the OpenDeskAcc function
instead.

Terminating an Application

The Process Manager automatically terminates a process when the process either exits its
main routine or encounters a fatal error condition (such as an attempt to divide by 0).

Using the Process Manager 2-11

labeuel\ ssao0id
N

CHAPTER 2

Process Manager

When a process terminates, the Process Manager takes care of any required cleanup
operations; these include removing the process from the list of open processes and
releasing the memory occupied by the application partition (as well as any temporary
memory the process still holds). If necessary, the Process Manager sends an Application
Died event to the process that launched the one about to terminate.

Your application can also terminate itself directly by calling the Exi t ToShel |

procedure. In general, you need to call Exi t ToShel | only if you want to terminate your
application without having it return from its main routine. This might be useful when
your initialization code detects that some essential system capability is not available (for
instance, when the computer running a stereo sound-editing application does not
support stereo sound playback). Listing 2-3 shows one way to exit gracefully in this
situation.

Listing 2-3 Terminating an application

PROCEDURE CheckFor St er eoSound;

VAR
nyErr: OSErr; {result code from CGestalt}
nyFeature: Longlnt; {features bit flags from Gestalt}
nyString: Str 255; {text of alert nessage}
nyltem I nt eger; {itemreturned by StopAlert}
CONST
kAl ert BoxI D = 128; {resource I D of alert tenplate}
kAlertStrings = 128; {resource I D of alert strings}
kNoSt ereocAl ert = 5; {index of No Stereo alert text}

BEG N
nmyErr := Cestalt(gestaltSoundAttr, mnyFeature);
IF nyErr = noErr THEN
| F BTst (nyFeature, gestaltStereoCapability) = FALSE THEN
BEG N
GetlndString(nmyString, kAlertStrings, kNoStereoAlert);
Par anifext (nyString, "', "', '');
nyltem:= StopAl ert (kA ertBoxlD, NL);
Exi t ToShel | ; {exit the application}
END
ELSE
DoError (nyErr);
END;

The procedure CheckFor St er eoSound defined in Listing 2-3 checks whether the
computer supports stereo sound playback. If not, CheckFor St er eoSound notifies the
user by displaying an alert box and terminates the application by calling Exi t ToShel | .

2-12 Using the Process Manager

CHAPTER 2

Process Manager

Note

The Exi t ToShel | procedure is the only means of terminating a
process. It is always called during process termination, whether by your
application itself, the Process Manager, or some other process. O

If your application launches another application that terminates, either normally or as
the result of an error, the Process Manager can notify your application by sending it an
Application Died event. To request this notification, you must set the accept AppDi ed
flag in your application’s ' SI ZE' resource. (For a complete description of the ' SI ZE'
resource, see the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.)

Application Died—inform that an application has terminated
Event ID kAEAppl i cati onDi ed
Required parameters

labeuel\ ssao0id
N

Keyword keyEr r or Nunber
Descriptor type t ypeLongl nt eger
Data A sign-extended OSEr r value. A value of noEr r indicates

normal termination; any other value indicates that the
application terminated because of an error.

Keyword keyProcessSeri al Nunmber

Descriptor type t ypeProcessSeri al Nunber

Data The process serial number of the application that terminated.
Requested action None. This Apple event is sent only to provide information.

The Process Manager gets the value of the keyEr r or Nunber parameter from the
system global variable DSEr r Code. This value can be set either by the application before
it terminates or by the Operating System (when the application terminates as the result
of a hardware exception or other problem).

Process Manager Reference

This section describes the constants, data structures, and routines that are specific to the
Process Manager.

Constants

You can use Process Manager constants to get information about the attributes of the
Process Manager, identify certain special processes, and specify launch options.

Process Manager Reference 2-13

CHAPTER 2

Process Manager

Gestalt Selector and Response Bits

You can determine if the Process Manager is available and find out which features of the
launch routine are available by calling the Gest al t function with the selector
gestal t CSAttr.

CONST
gestal t CSAttr ='os ';{QS attributes}

The Gest al t function returns information by setting or clearing bits in the r esponse
parameter. The following constants define the bits currently used:

CONST
gest al t LaunchCanRet ur n = 1; {can return fromlaunch}
gestal t LaunchFul | Fil eSpec = 2; {LaunchApplication avail abl e}
gestal t LaunchContr ol = 3; {Process Manager is avail abl e}

Constant descriptions

gest al t LaunchCanRet ur n
Set if the _Launch trap macro can return to the caller. The _Launch
trap macro in system software version 7.0 (and in earlier versions
running MultiFinder) gives your application the option to continue
running after it launches another application. In earlier versions of
system software not running MultiFinder, the _Launch trap macro
forces the launching application to quit.

gest al t LaunchFul | Fi | eSpec
Set if the | aunchCont r ol FI ags field supports control flags in
addition to the | aunchCont i nue flag, and if the _Launch trap can
process the | aunchAppSpec, | aunchPr ocessSN,
| aunchPr ef erredSi ze, | aunchM ni munti ze,
| aunchAvai | abl eSi ze, and | aunchAppPar anet er s fields in
the launch parameter block.

gestal t LaunchCont r ol
Set if the Process Manager is available.

Process-ldentification Constants

2-14

The Process Manager provides three constants that can be used instead of a process
serial number to identify a process:

CONST
kNoPr ocess = 0; {process doesn’'t exist}
kSyst enPr ocess = 1; {process belongs to OS}
kCurrent Process = 2; {the current process}

Process Manager Reference

CHAPTER 2

Process Manager

Constant descriptions

kNoPr ocess
kSyst enPr ocess

kCurrent Process

Launch Options

Identifies a process that doesn’t exist.
Identifies a process that belongs to the Operating System.

Identifies the current process.

When you use the LaunchAppl i cat i on function, you specify the launch options in the
I aunchCont r ol Fl ags field of the launch parameter block. These are the constants you
can specify in the | aunchCont r ol Fl ags field:

CONST

[aunchCont i nue

I aunchNoFi | eFl ags

| aunchUseM ni mum

I aunchDont Swi t ch

I aunchl nhi bi t Daenon

$4000;
$0800;
$0400;
$0200;
$0080;

labeuel\ ssao0id
N

Constant descriptions

| aunchConti nue

Set this flag if you want your application to continue after the
specified application is launched. If you do not set this flag,
LaunchAppl i cat i on terminates your application after launching
the specified application, even if the launch fails.

I aunchNoFi | eFl ags

Set this flag if you want the LaunchAppl i cat i on function to
ignore any value specified in the | aunchFi | eFl ags field. If you
set the | aunchNoFi | eFl ags flag, the LaunchAppl i cati on
function extracts the Finder flags from the application file for you. If
you want to supply the file flags, clear the | aunchNoFi | eFl ags
flag and specify the Finder flags in the | aunchFi | eFl ags field of
the launch parameter block.

| aunchUseM ni num

Clear this flag if you want the LaunchAppl i cat i on function to
attempt to launch the application in the preferred size (as specified
in the application’s' SI ZE' resource). If you set the

I aunchUseM ni numflag, the LaunchAppl i cati on function
attempts to launch the application using the largest available size
greater than or equal to the minimum size but less than the
preferred size. If the LaunchAppl i cat i on function returns the
result code nentul | Er r or mentr agEr r, the application cannot be
launched under the current memory conditions.

| aunchDont Swi t ch

Set this flag if you do not want the launched application brought to
the front. If you set this flag, the launched application runs in the
background until the user brings the application to the front—for

Process Manager Reference 2-15

CHAPTER 2

Process Manager

example, by clicking in one of the application’s windows. Note that
most applications expect to be launched in the foreground. If you
clear the | aunchDont Swi t ch flag, the launched application is
brought to the front, and your application is sent to the background.
[aunchl nhi bi t Daenon
Set this flag if you do not want LaunchAppl i cat i on to launch a
background-only application. (A background-only application has
the onl yBackgr ound flag set inits' SI ZE' resource.)

Data Structures

This section describes the data structures that you use to provide information to the
Process Manager or that the Process Manager uses to return information to your
application.

Process Serial Number

The Process Manager uses process serial numbers to identify open processes. A process
serial number is a 64-bit quantity whose structure is defined by the
ProcessSeri al Nunber data type.

IMPORTANT

The meaning of the bits in a process serial number is internal to the
Process Manager. You should not attempt to interpret the value of the
process serial number. If you need to compare two process serial
numbers, call the SamePr ocess function. a

TYPE ProcessSeri al Nunber =

RECORD
hi ghLongOrf PSN: Longl nt; {hi gh-order 32 bits of psn}
| owLongOF PSN: Longl nt; {loworder 32 bits of psn}
END;

Field descriptions
hi ghLongOf PSN The high-order long integer of the process serial number.
| owLongOF PSN The low-order long integer of the process serial number.

Process Information Record

The Get Pr ocessl nf or mat i on function returns information in a process information
record, which is defined by the Pr ocessl nf oRec data type.

TYPE Processl nfoRec =

RECORD
processl nf oLengt h: Longl nt; {length of process info record}
processNane: StringPtr; {name of this process}

2-16 Process Manager Reference

CHAPTER 2

Process Manager

pr ocessNumnber : ProcessSeri al Nunber;

{psn of this process}
processType: Longl nt ; {file type of application file}
processSi ghat ur e: CSType; {signature of application file}
processhbde: Longl nt ; {'SIZE' resource flags}
processLocati on: Ptr; {address of partition}
processSi ze: Longl nt; {partition size}
processFreeMem Longl nt ; {free bytes in heap}
processLauncher: ProcessSeri al Nunber

{process that |aunched this one}
processLaunchDat e: Longl nt ; {time when | aunched}
processActi veTi ne: Longl nt; {accumul ated CPU ti ne}
pr ocessAppSpec: FSSpechktr; {location of the file}

END;

Field descriptions

processl nfolLength
The number of bytes in the process information record. For
compatibility, you should specify the length of the record in this
field.

pr ocessNane The name of the application or desk accessory. For applications, this
field contains the name of the application as designated by the user
at the time the application was opened. For example, for foreground
applications, the pr ocessNan® field contains the name as it
appears in the Application menu. For desk accessories, the
pr ocessNane field contains the name of the' DRVR' resource. You
must specify NI L in the pr ocessNane field if you do not want the
application name or the desk accessory hame returned. Otherwise,
you should allocate at least 32 bytes of storage for the string pointed
to by the pr ocessNane field. Note that the pr ocessNane field
specifies the name of either the application or the ' DRVR' resource,
whereas the pr ocessAppSpec field specifies the location of the file.

processNunmber The process serial number. The process serial number is a 64-bit
number; the meaning of these bits is internal to the Process
Manager. You should not attempt to interpret the value of the
process serial number.

processType The file type of the application, generally ' APPL' for applications
and ' appe' for background-only applications launched at startup.
If the process is a desk accessory, this field specifies the type of the
file containing the ' DRVR' resource.

processSi gnature
The signature of the file containing the application or the ' DRVR
resource (for example, the signature of the TeachText application is
"ttxt').

Process Manager Reference 2-17

labeuel\ ssao0id
N

CHAPTER 2

Process Manager

pr ocesshMbde Process mode flags. These flags indicate whether the process is an
application or desk accessory. For applications, this field also
returns information specified in the application’s' SI ZE' resource.
This information is returned as flags. You can refer to these flags by
using these constants:

CONST
nodeDeskAccessory = $00020000;
modeMul ti Launch = $00010000;
nodeNeedSuspendResurmne = $00004000;
nodeCanBackgr ound = $00001000;
nmodeDoesAct i vat eOnFGSwi t ch = $00000800;
nodeOnl yBackgr ound = $00000400;
nodeGet Front C i cks = $00000200;
nodeGet AppDi edMsg = $00000100;
node32Bi t Conpati bl e = $00000080;
nodeHi ghLevel Event Awnar e = $00000040;
nodelLocal AndRenot eHLEvent s = $00000020;
nodeSt at i oner yAwar e = $00000010;
nodeUseText Edi t Servi ces = $00000008;

processLocati on
The beginning address of the application partition.

processSi ze The number of bytes in the application partition (including the
heap, stack, and A5 world).

processFreeMem
The number of free bytes in the application heap.

pr ocessLauncher
The process serial number of the process that launched the
application or desk accessory. If the original launcher of the process
is no longer open, this field contains the constant KNoPr ocess.

processLaunchDat e
The value of the Ti cks global variable at the time that the process
was launched.

processActi veTi ne
The accumulated time, in ticks, during which the process has used
the CPU, including both foreground and background processing
time.

processAppSpec
The address of a file specification record that stores the location of
the file containing the application or ' DRVR resource. You should
specify NI L in the pr ocessAppSpec field if you do not want the
FSSpec record of the file returned.

2-18 Process Manager Reference

CHAPTER 2

Process Manager

Launch Parameter Block

You specify a launch parameter block as a parameter to the
LaunchAppl i cat i on function. The launch parameter block is defined
by the LaunchPar anmBl ockRec data type.

TYPE LaunchPar anBl ockRec =

RECORD
reservedl: Longl nt; {reserved}
reserved2: I nt eger; {reserved}
| aunchBl ockl D: I nt eger; {ext ended bl ock} g
| aunchEPBLengt h: Longl nt ; {l ength of bl ock} 5
| aunchFi | eFl ags: I nt eger; {app’ s Finder flags} ;
| aunchControl Fl ags: LaunchFl ags; {launch options} 2
| aunchAppSpec: FSSpecPtr ; {l ocation of app’s file} %
I aunchPr ocessSN: ProcessSeri al Nunber; {returned psn} A
I aunchPr ef erredSi ze: Longl nt; {returned pref size}
| aunchM ni munsi ze: Longl nt ; {returned nmin size}
[aunchAvai | abl eSi ze: Longl nt ; {returned avail size}
| aunchAppPar anet er s: AppPar anet ersPtr; {hi gh-level event}

END;

Field descriptions
reservedl
reserved2
| aunchBl ockl D

Reserved.
Reserved.

A value that indicates whether you are using the fields following it
in the launch parameter block. Specify the constant
ext endedBl ock if you use the fields that follow it.

| aunchEPBLengt h
The length of the fields following this field in the launch parameter
block. Use the constant ext endedBl ockLen to specify this value.

I aunchFi | eFl ags
The Finder flags for the application file. Set the
| aunchNoFi | eFl ags constant in the | aunchCont r ol Fl ags
field if you want the LaunchAppl i cat i on function to extract the
Finder flags from the application file and to set the
I aunchFi | eFl ags field for you.

| aunchCont rol Fl ags
The launch options that determine how the application is launched.
You can specify these constant values to set various options:

CONST
| aunchCont i nue = $4000;
| aunchNoFi | eFl ags = $0800;

Process Manager Reference 2-19

CHAPTER 2

Process Manager

| aunchUseM ni mum = $0400;
| aunchDont Swi t ch = $0200;
| aunchl nhi bi t Daenon = $0080;

See “Launch Options” on page 2-15 for a complete description of
these flags.

| aunchAppSpec A pointer to a file specification record that gives the location of the
application file to launch.

| aunchProcessSN
The process serial number returned to your application if the launch
is successful. You can use this process serial number in other
Process Manager routines to refer to the launched application.

| aunchPreferredSi ze
The preferred partition size for the launched application as
specified in the launched application’s' SI ZE' resource.
LaunchAppl i cat i on sets this field to 0 if an error occurred or if
the application is already open.

[aunchM ni nunti ze
The minimum partition size for the launched application as
specified in the launched application’s' SI ZE' resource.
LaunchAppl i cat i on sets this field to 0 if an error occurred or if
the application is already open.

| aunchAvai | abl eSi ze
The maximum partition size that is available for allocation. This
value is returned to your application only if the mentul | Er r result
code is returned. If the application launch fails because of
insufficient memory, you can use this value to determine if there is
enough memory available to launch in the minimum size.

| aunchAppPar anet er s
The first high-level event to send to the launched application. If you
set this field to NI L, LaunchAppl i cat i on creates and sends the
Open Application Apple event to the launched application.

Application Parameters Record

2-20

You specify an application parameters record in the | aunchAppPar anet er s field of
the launch parameter block whose address is passed to the LaunchAppl i cati on
function. This record specifies the first high-level event to be sent to the newly launched
application. The application parameters record is defined by the AppPar anet er s

data type.

TYPE AppParaneters =

RECORD
t heMsgEvent : Event Recor d; {event (high-1level)}
event Ref Con: Longl nt ; {reference constant}

Process Manager Reference

Routines

CHAPTER 2

Process Manager

nmessagelengt h: Longl nt; {length of buffer}
nmessageBuffer: ARRAY [0..0] OF SignedByte;
END;

Field descriptions

t heMsgEvent The event record specifying the first high-level event to be sent to
the launched application.

event Ref Con A reference constant. Your application can use this field for its own
purposes.

nmessagelLengt h The length of the buffer specified by the nessageBuf f er field.

nmessageBuf f er Abuffer of data. The nature of this data varies according to the
event being sent.

labeuel\ ssao0id
N

This section describes the Process Manager routines you can use to get information
about any currently open applications, to control process execution, to launch other
applications, and to terminate your application.

Getting Process Information

You can use the Process Manager to get the process serial number of a particular process,
to generate a list of all open processes, to get information about processes, or to change
the scheduling status of a process.

GetCurrentProcess

DESCRIPTION

Use the Get Cur r ent Pr ocess function to get information about the current process,
if any.

FUNCTI ON CGet Current Process (VAR PSN: ProcessSeri al Nunber): OSErr;

PSN On output, the process serial number of the current process.

The Get Cur r ent Pr ocess function returns, in the PSN parameter, the process serial
number of the process that is currently running, that is, the one currently accessing the
CPU. This is the application associated with the Cur r ent A5 global variable. This
application can be running in either the foreground or the background.

Applications can use this function to find their own process serial number. Drivers can
use this function to find the process serial number of the current process. You can use the
returned process serial number in other Process Manager routines.

Process Manager Reference 2-21

CHAPTER 2

Process Manager

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the Get Cur r ent Pr ocess function are

Trap macro Selector
_OSDi spat ch $0037

RESULT CODE
nokErr 0 No error
GetNextProcess
Use the Get Next Pr ocess function to get information about the next process, if any, in
the Process Manager’s internal list of open processes.
FUNCTI ON CGet Next Process (VAR PSN: ProcessSeri al Nunber): OSErr;
PSN On input, the process serial number of a process. This number should be a
valid process serial number returned from LaunchAppl i cati on,
Get Next Pr ocess, Get Front Pr ocess, or Get Cur r ent Process, or
else the defined constant KNoPr ocess. On output, the process serial
number of the next process, or else KNoPr ocess.
DESCRIPTION

The Process Manager maintains a list of all open processes. You can derive this list by
using repetitive calls to Get Next Pr ocess. Begin generating the list by calling

Get Next Pr ocess and specifying the constant KNoPr ocess in the PSN parameter. You
can then use the returned process serial number to get the process serial number of the
next process. Note that the order of the list of processes is internal to the Process
Manager. When the end of the list is reached, Get Next Pr ocess returns the constant
kNoPr ocess in the PSN parameter and the result code pr ocNot Found.

You can use the returned process serial number in other Process Manager routines. You
can also use this process serial number to specify a target application when your
application sends a high-level event.

ASSEMBLY-LANGUAGE INFORMATION

2-22

The trap macro and routine selector for the Get Next Pr ocess function are

Trap macro Selector
_0OsDhi spat ch $0038

Process Manager Reference

RESULT CODES

CHAPTER 2

Process Manager

noErr 0 No error
par anerr -50 Process serial number is invalid
pr ocNot Found -600 No process in the process list following the specified process

GetProcessIinformation

DESCRIPTION

Use the Get Pr ocessl| nf or mat i on function to get information about a specific process.

FUNCTI ON Get Processl nformati on (PSN: ProcessSeri al Nunber;
VAR i nfo: ProcesslnfoRec): OSErr;

PSN The process serial number of a process. This number should be a valid
process serial number returned from LaunchAppl i cati on,
Get Next Process, Get Front Process, Get Current Process, orelsea
high-level event. You can use the constant kCur r ent Pr ocess to get
information about the current process.

labeuel\ ssao0id
N

info A record containing information about the specified process.

The Get Pr ocessl nf or mat i on function returns, in a process information record,
information about the specified process. The information returned in the i nf o
parameter includes the application’s name as it appears in the Application menu, the
type and signature of the application, the address of the application partition, the
number of bytes in the application partition, the number of free bytes in the application
heap, the application that launched the application, the time at which the application
was launched, and the location of the application file. See “Getting Information About
Other Processes” on page 2-5 for the structure of the process information record.

The Get Processl nf or mat i on function also returns information about the
application’s' SI ZE' resource and indicates whether the process is an application or a
desk accessory.

You need to specify values for the pr ocessl| nf oLengt h, pr ocessNane, and

pr ocessAppSpec fields of the process information record. Specify the length of the
process information record in the pr ocessl| nf oLengt h field. If you do not want
information returned in the pr ocessNane and pr ocessAppSpec fields, specify NI L
for these fields. Otherwise, allocate at least 32 bytes of storage for the string pointed to
by the pr ocessNane field and, in the pr ocessAppSpec field, specify a pointer to an
FSSpec record.

Process Manager Reference 2-23

CHAPTER 2

Process Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Get Pr ocessl nf or mat i on function are

Trap macro Selector
_OSDi spat ch $003A

SPECIAL CONSIDERATIONS
Do not call Get Pr ocessl nf or mat i on at interrupt time.

RESULT CODES

nokErr 0 No error

par anerr -50 Process serial number is invalid
SameProcess

Use the SanePr ocess function to determine whether two process serial numbers
specify the same process.

FUNCTI ON SameProcess (PSN1, PSN2: ProcessSeri al Nunber;
VAR result: Bool ean): OSErr;

PSN1 A process serial number.
PSN2 A process serial number.
result A Boolean value that indicates whether the process serial numbers passed

in PSN1 and PSN2 refer to the same process.

DESCRIPTION

The SanePr ocess function compares two process serial numbers and determines
whether they refer to the same process. If the process serial numbers specified in the
PSN1 and PSN2 parameters refer to the same process, the SanmePr ocess function
returns TRUE in the r esul t parameter; otherwise, it returns FALSE in ther esul t
parameter.

Do not attempt to compare two process serial numbers by any means other than the
SanePr ocess function, because the interpretation of the bits in a process serial number
is internal to the Process Manager.

The values of PSN1 and PSN2 must be valid process serial numbers returned from
LaunchAppl i cati on, Get Next Pr ocess, Get Front Process,

Get Cur rent Process, or a high-level event. You can also use the constant

kCur r ent Pr ocess to refer to the current process.

2-24 Process Manager Reference

CHAPTER 2

Process Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SanmePr ocess function are

Trap macro Selector
_OSDi spat ch $003D

RESULT CODES

noErr 0 No error

par anerr -50 Process serial number is invalid
GetFrontProcess

Use the Get Fr ont Pr ocess function to get the process serial number of the front
process.

FUNCTI ON Get Front Process (VAR PSN: ProcessSeri al Nunber): OSErr;

PSN On output, the process serial number of the process running in the
foreground.

DESCRIPTION

The Get Fr ont Pr ocess function returns, in the PSN parameter, the process serial
number of the process running in the foreground. You can use this function to determine
if your process or some other process is in the foreground. You can use the process serial
number returned in the PSN parameter in other Process Manager routines.

If no process is running in the foreground, Get Fr ont Pr ocess returns the result code
pr ocNot Found.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Get Fr ont Pr ocess function are

Trap macro Selector
_(OSDi spat ch $0039

Process Manager Reference 2-25

labeuel\ ssao0id
N

CHAPTER 2

Process Manager

RESULT CODES

noErr 0 No error
par anerr -50 Process serial number is invalid
pr ocNot Found -600 No process in the foreground

SetFrontProcess

Use the Set Fr ont Pr ocess function to set the front process.
FUNCTI ON Set Front Process (PSN: ProcessSeri al Nunber): OSErr;

PSN The process serial number of the process you want to move to the
foreground. This number should be a valid process serial number
returned from LaunchAppl i cat i on, Get Next Pr ocess,

Get Front Process, Get Current Process, or a high-level event. You
can also use the constant kCur r ent Pr ocess to refer to the current
process.

DESCRIPTION

The Set Fr ont Pr ocess function schedules the specified process to move to the
foreground. The specified process moves to the foreground after the current foreground
process makes a subsequent call to WAi t Next Event or Event Avai | .

If the specified process serial number is invalid or if the specified process is a
background-only application, Set Fr ont Pr ocess returns a nonzero result code and
does not change the current foreground process.

If a modal dialog box is the frontmost window, the specified process remains in the
background until the user dismisses the modal dialog box.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Set Fr ont Pr ocess function are

Trap macro Selector
_OSDi spat ch $003B

SPECIAL CONSIDERATIONS
Do not call Set Fr ont Pr ocess interrupt time.

2-26 Process Manager Reference

CHAPTER 2

Process Manager

RESULT CODES
noErr 0 No error
pr ocNot Found -600 Process with specified process serial number doesn’t exist
or process is suspended by high-level debugger
appl sDaenon -606 Specified process runs only in the background
WakeUpProcess

DESCRIPTION

Use the WakeUpPr ocess function to make a process suspended by Wai t Next Event
eligible to receive CPU time.

FUNCTI ON WakeUpProcess (PSN: ProcessSerial Nunber): OSErr;

PSN The process serial number of the process to be made eligible. This number
should be a valid process serial number returned from
LaunchAppl i cati on, Get Next Process, Get Front Process,
CGet Cur rent Process, or a high-level event. You can also use the
constant KCur r ent Pr ocess to refer to the current process.

The WakeUpPr ocess function makes a process suspended by Wi t Next Event eligible
to receive CPU time. A process is suspended when the value of the s| eep parameter in
the Wi t Next Event function is not 0 and no events for that process are pending in the
event queue. This process remains suspended until the time specified in the sl eep
parameter expires or an event becomes available for that process. You can use
WakeUpPr ocess to make the process eligible for execution before the time specified in
the sl eep parameter expires.

The WakeUpPr ocess function does not change the order of the processes scheduled for
execution; it only makes the specified process eligible for execution.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the WAkeUpPr ocess function are

Trap macro Selector
_0OsDhi spat ch $003C

Process Manager Reference 2-27

labeuel\ ssao0id
N

RESULT CODES

CHAPTER 2

Process Manager

noErr 0 No error

pr ocNot Found -600 Suspended process with specified process serial number
doesn’t exist

Launching Applications and Desk Accessories

Your application can use the LaunchAppl i cat i on function to launch other
applications and the LaunchDeskAccessor y function to launch desk accessories.

LaunchApplication

DESCRIPTION

2-28

You can use the LaunchAppl i cat i on function to launch an application.
FUNCTI ON LaunchAppli cation (LaunchParams: LaunchPBPtr): OSErr;
LaunchPar ans

A pointer to a launch parameter block specifying information about the

application to launch.

Parameter block

- launchBl ockl D I nt eger Extended block
- launchEPBLengt h Longl nt Length of following fields
- launchFi | eFl ags I nt eger Finder flags for the application file
- launchControl Fl ags LaunchFl ags Flags for launch options
- launchAppSpec FSSpecPt r Location of application file to launch
- | aunchProcessSN ProcessSeri al Nunber
Process serial number
~ launchPreferredSi ze Longlnt Preferred application partition size
~ launchM ni nuntsi ze Longl nt Minimum application partition size
« launchAvail abl eSi ze Longl nt Maximum available partition size
- | aunchAppParaneters AppPar anet er sPtr
High-level event for launched
application

The LaunchAppl i cat i on function launches the application from the specified file and
returns the process serial number, preferred partition size, and minimum partition size if
the application is successfully launched.

Note that if you launch another application without terminating your application, the
launched application is not actually executed until you make a subsequent call to
Wi t Next Event or Event Avai | .

Process Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

CHAPTER 2

Process Manager

Set the | aunchCont i nue flag in the | aunchCont r ol FlI ags field of the launch
parameter block if you want your application to continue after the specified application
is launched. If you do not set this flag, LaunchAppl i cat i on terminates your
application after launching the specified application, even if the launch fails.

The trap macro and registers on entry and exit for LaunchAppl i cat i on are

Trap macro

_Launch

Registers on entry

A0 Pointer to launch parameter block

Registers on exit

A0 Pointer to launch parameter block

DO Result code

noErr
menful | Err

menfr agEr r

appModeErr
appMentul | Err

appl sDaenon

-108

—601

—602
—605

—606

Process Manager Reference

No error

Not enough memory to allocate the partition size
specified in the' SI ZE' resource

Not enough room to launch application with special
requirements

Memory mode is 32-bit, but application is not 32-bit clean
More memory is required for the partition size than the
amount specified in the ' SI ZE' resource

Application runs only in the background, and launch
flags don’t allow background-only applications

2-29

labeuel\ ssao0id
N

CHAPTER 2

Process Manager

LaunchDeskAccessory

DESCRIPTION

You can use the LaunchDeskAccessor y function to launch desk accessories. Use this
function only when your application needs to launch a desk accessory for some reason
other than the user’s choosing one from the Apple menu. (When the user chooses any
Apple menu item that is not specific to your application, use the OpenDeskAcc
function.)

FUNCTI ON LaunchDeskAccessory (pFil eSpec: FSSpechktr;
pDANane: StringPtr): OSErr;

pFi | eSpec A pointer to a file system specification of the resource fork to search for
the specified desk accessory.

pDANane The name of the ' DRVR' resource to launch.

The LaunchDeskAccessor y function searches the resource fork of the file specified by
the pFi | eSpec parameter for the desk accessory with the ' DRVR' resource name
specified in the pDANane parameter. If the' DRVR' resource name is found,
LaunchDeskAccessory launches the corresponding desk accessory. If the desk
accessory is already open, it is brought to the front.

Use the pFi | eSpec parameter to specify the file to search. Specify NI L as the value of
pFi | eSpec if you want to search the current resource file and the resource files opened
before it. Otherwise, use a pointer to an FSSpec record to specify the file.

In the pDAName parameter, specify the ' DRVR' resource name of the desk accessory to
launch. Specify NI L as the value of pDANan® if you want to launch the first' DRVR
resource found in the file as returned by the Resource Manager. Because the
LaunchDeskAccessory function opens the specified resource file for exclusive access,
you cannot launch more than one desk accessory from the same resource file.

If the' DRVR' resource is in a resource file that is already open by the current process or
if the driver is in the System file and the Option key is pressed, LaunchDeskAccessory
launches the desk accessory in the application’s heap. Otherwise, the desk accessory is
given its own partition and launched in the system heap.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

2-30

The trap macro and routine selector for the LaunchDeskAccessor y function are

Trap macro Selector
_0OsDhi spat ch $0036

noErr 0 No error
r esNot Found -192 Resource not found
Process Manager Reference

CHAPTER 2

Process Manager

Terminating Processes

You can use the Exi t ToShel | procedure to have your application terminate itself
directly. In general, you need to call Exi t ToShel | only if you want your application to
terminate without reaching the end of its main routine.

ExitToShell

Call Exi t ToShel | to terminate your application directly.

PROCEDURE Exi t ToShel | ;

labeuel\ ssao0id
N

DESCRIPTION
The Exi t ToShel | procedure terminates the calling process. The Process Manager
removes your application from the list of open processes and performs any other
necessary cleanup operations. In particular, all memory in your application partition and
any temporary memory still allocated to your application is released. If necessary, the
Application Died Apple event is sent to the process that launched your application.

If your application was the foreground process at the time it called Exi t ToShel |, its
name is removed from the Application menu. The Process Manager selects a new
foreground process, switches it into the foreground, and propagates the scrap to the new
foreground application.

If your application was the last one running and the shell program is not the Finder, the
Process Manager displays a dialog box that gives the user the choice of restarting the
computer or shutting it down.

SPECIAL CONSIDERATIONS

Any trap patches installed by your application are removed immediately by
Exi t ToShel | . They will not affect any trap calls made by Exi t ToShel | itself.

RESULT CODES
When Exi t ToShel | exits, the system global variable DSEr r Code holds its result code.

SEE ALSO

See “Terminating an Application” on page 2-11 for details on the parameters passed to
the Application Died event.

Process Manager Reference 2-31

CHAPTER 2

Process Manager

Summary of the Process Manager

Pascal Summary

Constants
CONST
{Gestalt selector and response bits}
gestal t CSAttr ='os '; {O'S attributes sel ector}
gest al t LaunchCanRet ur n = 1; {can return from |l aunch}
gestal t LaunchFul | Fil eSpec = 2; {LaunchApplication is avail abl e}
gest al t LaunchCont r ol = 3 {Process Manager is avail abl e}

{process identification constants}

kNoPr ocess = 0; {process doesn’'t exist}
kSyst enPr ocess = 1; {process belongs to CS}
kCurrent Process = 2; {the current process}

{launch control flags}

[aunchCont i nue = $4000; {continue after |aunch}

I aunchNoFi | eFl ags = $0800; {ignore | aunchFil eFl ags}

I aunchUseM ni mum = $0400; {use mininmum or greater size}
[aunchDont Swi t ch = $0200; {l'aunch app. in background}

I aunchAl | ow24Bi t = $0100; {reserved}

I aunchl nhi bi t Daenon = $0080; {don't | aunch background app.}

{launch paraneter block length and |D}
ext endedBl ockLen si zeof (LaunchPar anBl ockRec) - 12;

ext endedBl ock = $4C43; {ext ended bl ock}

{flags in processhwbde field}

nodeDeskAccessory = $00020000; {process is desk acc}
nodeMul ti Launch = $00010000; {fromapp file' s flags}
nodeNeedSuspendResune = $00004000; {from'SIZE resource}
nodeCanBackgr ound = $00001000; {from'SIZE resource}
nodeDoesAct i vat eOnFGSwi t ch = $00000800; {from'SIZE resource}
nodeOnl yBackgr ound = $00000400; {from'SIZE resource}
nodeCet Front C i cks = $00000200; {from'SIZE resource}

2-32 Summary of the Process Manager

CHAPTER 2

Process Manager

nodeCet AppDi edMsg = $00000100; {from'SIZE resource}
node32Bi t Conpati bl e = $00000080; {from*'SIZE resource}
nodeHi ghLevel Event Awar e = $00000040; {from'SIZE resource}
nodelLocal AndRenot eHLEvents = $00000020; {from'SIZE resource}
nodeSt at i oner yAwar e = $00000010; {from*'SIZE resource}
nodeUseText Edi t Servi ces = $00000008; {from'SIZE resource}

Data Types

Process Serial Number

TYPE
ProcessSeri al Nunber =
RECORD
hi ghLongOf PSN: Longl nt; {hi gh-order 32 bits of psn}
| owLongOF PSN: Longl nt ; {loworder 32 bits of psn}
END;

Pr ocessSeri al Number Pt r "ProcessSeri al Nunber ;

Process Information Record

Pr ocessl nf oRec =
RECORD

labeuel\ ssao0id
N

Processl nf oRecPt r

= "Processl nf oRec;

Summary of the Process Manager

processl nf oLengt h: Longl nt; {length of record}
pr ocessNarne: StringPtr; {nane of process}
pr ocessNumber : ProcessSeri al Nunber; {psn of the process}
processType: Longl nt; {file type of app file}
processSi gnhat ure: OSType; {signature of app file}
pr ocesshbde: Longl nt; {'SIZE' resource flags}
processLocati on: Ptr; {address of partition}
processSi ze: Longl nt ; {partition size}
processFreeMem Longl nt; {free bytes in heap}
processLauncher: ProcessSeri al Nunber; {proc that |aunched this one}
processLaunchDat e: Longl nt ; {time when | aunched}
processActi veTi ne: Longl nt; {accumul ated CPU ti ne}
pr ocessAppSpec: FSSpechPtr; {location of the file}
END;

2-33

CHAPTER 2

Process Manager

Application Parameters Record

AppPar anet ers =

RECORD
t heMsgEvent : Event Recor d; {event (high-level)}
event Ref Con: Longl nt; {reference constant}
nmessagelengt h: Longl nt ; {length of buffer}
nessageBuf f er: ARRAY [0..0] OF SignedByte;

END;

AppPar anet er skt r NAppPar anet er s;

Launch Parameter Block

LaunchFl ags = I nt eger

LaunchPar anBl ockRec =

RECORD
reservedl: Longl nt ; {reserved}
reserved2: I nt eger; {reserved}
| aunchBl ockl D: I nt eger; {ext ended bl ock}
| aunchEPBLengt h: Longl nt ; {length of bl ock}
| aunchFi | eFl ags: I nt eger; {app’s Finder flags}
| aunchControl Fl ags: LaunchFl ags; {l'aunch options}
| aunchAppSpec: FSSpecPtr; {location of app’s file}
| aunchProcessSN: ProcessSeri al Nunber; {returned psn}
| aunchPreferredSi ze: Longlnt; {returned pref size}
[aunchM ni nunti ze: Longl nt ; {returned min size}
| aunchAvai | abl eSi ze: Longlnt; {returned avail size}
| aunchAppPar anet ers: AppParaneterspktr; {hi gh-level event}

END;

LaunchPBPt r = “LaunchPar anBl ockRec

Routines

Getting Process Information

FUNCTI ON Get Current Process (VAR PSN:. ProcessSeri al Nunber): OSErr;
FUNCTI ON CGet Next Process (VAR PSN: ProcessSerial Number): OSErr;

FUNCTI ON Get Pr ocessl nf ormati on
(PSN: ProcessSeri al Nunmber ;
VAR info: ProcesslnfoRec): OCSErr;

2-34 Summary of the Process Manager

CHAPTER 2

Process Manager

FUNCTI ON SanePr ocess

(PSN1: ProcessSeri al Nunber;

PSN2: ProcessSeri al Nunber ;

VAR resul t:
FUNCTI ON Cet Fr ont Process
FUNCTI ON Set Fr ont Process
FUNCTI ON WakeUpPr ocess

Launching Applications and Desk Accessories
FUNCTI ON LaunchAppl i cation

(LaunchPar ans:

Bool ean): OSErr;

(VAR PSN: ProcessSerial Nunber): OSErr;
(PSN: ProcessSeri al Nunmber): OSErr;
(PSN: ProcessSeri al Nunber): OSErr;

LaunchPBPtr): OSErr;

FUNCTI ON LaunchDeskAccessory (pFi | eSpec: FSSpecPtr; pDANane: StringPtr):

CSEr r;

Terminating a Process
PROCEDURE Exi t ToShel | ;

C Summary

Constants

/*Cestalt selector and response bits*/

#define gestal t OSAttr 'os '
#def i ne gestaltLaunchCanRet urn 1
#define gestaltLaunchFul | Fi | eSpec 2
#def i ne gestaltLaunchControl 3

/*process identification constants*/

enum {
kNoPr ocess 0,
kSyst enPr ocess 1,
kCurrent Process 2
1

/*launch control flags*/
enum {

| aunchCont i nue = 0x4000,
I aunchNoFi | eFl ags = 0x0800,
I aunchUseM ni mum = 0x0400,
| aunchDont Swi t ch = 0x0200,

Summary of the Process Manager

/*Q' S attributes sel ector*/
/*can return from | aunch*/
/*LaunchAppl i cation avail abl e*/
/*Process Manager is avail abl e*/

/*process doesn’t exist*/
/*process belongs to Os*/
/*the current process*/

/*continue after |aunch*/
/*ignore |aunchFil eFl ags*/
/*use m nimum or greater size*/
/*l aunch app. in background*/

2-35

labeuel\ ssao0id
N

CHAPTER 2

Process Manager

| aunchAl | ow24Bi t
| aunchl nhi bi t Daenpn

0x0100, /*reserved*/
0x0080 /*don't | aunch background app. */

i

/*1aunch paraneter block |ength and | D/

#def i ne ext endedBl ockLen (si zeof (LaunchPar anBl ockRec) - 12)
#def i ne extendedBl ock ((unsi gned short)'LC)

/*flags in processhbde field*/

enum {
nodeDeskAccessory = 0x00020000, [/*process is desk acc*/
nodeMul ti Launch = 0x00010000, /*fromapp file's flags*/
nodeNeedSuspendResune = 0x00004000, /*from'SlIZE resource*/
nodeCanBackgr ound = 0x00001000, /*from'SlIZE resource*/
nodeDoesAct i vat eOnFGSwi t ch = 0x00000800, /*from'SIZE resource*/
nodeOnl yBackgr ound = 0x00000400, /*from'SlIZE resource*/
nodeCet Front O i cks = 0x00000200, /*from'SlIZE resource*/
nodeCGet AppDi edMsg = 0x00000100, /*from'SIZE resource*/
node32Bi t Conpati bl e = 0x00000080, /*from'SlIZE resource*/
nodeHi ghLevel Event Awar e = 0x00000040, /*from'SlIZE resource*/
nodeLocal AndRenot eHLEvent s = 0x00000020, /*from'SIZE resource*/
nodeSt at i oner yAwar e = 0x00000010, /*from'SlIZE resource*/
nodeUseText Edi t Ser vi ces = 0x00000008 /*from'SlIZE resource*/

i

Data Types

Process Serial Number

struct ProcessSerial Nunber {
unsi gned | ong hi ghLongOf PSN,; /*hi gh-order 32 bits of psn*/
unsi gned | ong | owLongCOr PSN,; /*l oworder 32 bits of psn*/

b

typedef struct ProcessSeri al Nunmber ProcessSeri al Nunber;
t ypedef ProcessSerial Number *ProcessSeri al NunmberPtr;

Process Information Record

struct ProcesslnfoRec {

unsi gned | ong processl nf oLengt h; /*l ength of record*/
StringPtr pr ocessNane; /*name of process*/
ProcessSeri al Nunber processNunber; /*psn of the process*/

2-36 Summary of the Process Manager

CHAPTER 2

Process Manager

unsi gned | ong
OSType

unsi gned | ong

Ptr

unsi gned | ong

unsi gned | ong
ProcessSeri al Nunber

unsi gned | ong
unsi gned | ong
FSSpecPt r

b

processType,;
processSi gnat ure;
pr ocessMbde;
processLocati on;
processSi ze;
processFreeMem
processLauncher;

processLaunchDat e;
processActi veTi ne;
processAppSpec;

typedef struct ProcesslnfoRec Processl nfoRec;
t ypedef Processl nfoRec *Processl nfoRecPtr

Application Parameters Record

struct AppParaneters {
Event Record
unsi gned | ong
unsi gned | ong

}s

t heMsgEvent ;

event Ref Con;
nessagelengt h;

typedef struct AppParaneters AppParaneters;
t ypedef AppParaneters *AppParanetersPtr

Launch Parameter Block

t ypedef unsi gned short LaunchFl ags;

struct LaunchParanBl ockRec {

unsi gned | ong
unsi gned short
unsi gned short
unsi gned | ong
unsi gned short
LaunchFl ags
FSSpecPt r
ProcessSeri al Nunber
unsi gned | ong
unsi gned | ong
unsi gned | ong
AppPar anet ersPtr

reservedl;
reservedz;

| aunchBl ockl D;

| aunchEPBLengt h;

| aunchFi | eFl ags;

| aunchCont r ol Fl ags;
| aunchAppSpec;

I aunchProcessSN

| aunchPref erredSi ze
| aunchM ni munsi ze;

| aunchAvai | abl eSi ze
| aunchAppPar anet er s;

Summary of the Process Manager

/*file type of app file*/
/*signature of app file*/
/*' Sl ZE' resource flags*/
/*address of partition*/
[*partition size*/

/*free bytes in heap*/
/*proc that launched this */
/* one*/

/*time when | aunched*/
/*accumul ated CPU tine*/
/*l ocation of the file*/

/*event (high-1evel)*/
/*reference constant*/
/*1 ength of buffer*/

/*reserved*/

[*reserved*/

/ *ext ended bl ock*/

/*1 ength of bl ock*/
/*app’s Finder flags*/
/*l aunch options*/
/*location of app’'s file*/
/*returned psn*/
/*returned pref size*/
/*returned nin size*/
/*returned avail size*/
/*hi gh-1evel event*/

2-37

labeuel\ ssao0id
N

}s

CHAPTER 2

Process Manager

typedef struct LaunchParanBl ockRec LaunchPar anBl ockRec;
t ypedef LaunchParanBl ockRec *LaunchPBPtr ;

Routines

Getting Process Information

pascal

pascal

pascal

pascal

pascal

pascal

pascal

OSErr Cet Current Process
(ProcessSeri al Nunber *PSN);

OSErr GCet Next Process (ProcessSerial Nunber *PSN);

OSErr Get Processl| nformati on
(const ProcessSeri al Nunber
Processl nfoRecPtr info);

OSErr SaneProcess (const ProcessSeri al Nunber
const ProcessSeri al Nunber
Bool ean *result);

OSErr Cet Front Process

(ProcessSeri al Nunber *PSN) ;

OSErr Set Front Process
(const ProcessSeri al Nunber

OSErr WakeUpProcess (const ProcessSeri al Nunmber

Launching Applications and Desk Accessories

pascal

pascal

OSErr LaunchApplication
(const LaunchPar anBl ockRec

OSErr LaunchDeskAccessory
(const FSSpec *pFil eSpec,
Const St r 255Par am pDANane) ;

Terminating a Process

pascal

2-38

voi d ExitToShel | (void);

Summary of the Process Manager

*PSN,

*PSN1,
*PSN2,

*PSN) ;
*PSN);

*LaunchPar ans) ;

CHAPTER 2

Process Manager

Assembly-Language Summary

Data Structures

Process Serial Number

0
4

hi ghLongOf PSN
| owLongCOf PSN

Process Information Record

0

4

8
16
20
24
28
32
36
40
48
52
56

Application Parameters Record

0
16
20
24

processl nfolLength
pr ocessNane
processNumber
processType
processSi gnature
pr ocesshMbde
processLocati on
processSi ze
processFreeMem
processLauncher
processLaunchDat e
processActiveTi ne
pr ocessAppSpec

t heMsgEvent
event Ref Con
nessagelLength
nessageBuf f er

Launch Parameter Block

0
4
6
8
12
14
16

20
28
32
36
40

reservedl
reserved?

I aunchBl ockl D

| aunchEPBLengt h

| aunchFi | eFl ags

[aunchCont r ol Fl ags
| aunchAppSpec

| aunchProcessSN

| aunchPreferredSi ze
| aunchM ni nunsi ze

| aunchAvai | abl eSi ze
| aunchAppPar anet er s

long
long

long
long
2 longs
long
long
long
long
long
long
2 longs
long
long
long

16 bytes
long
long
byte

long
word
word
long
word
word
long

2 longs
long
long
long
long

Summary of the Process Manager

high-order 32-bits of process serial number
low-order 32-bits of process serial number

length of this record

name of process

process serial number of the process
type of application file

signature of application file

flags from "' Sl ZE' resource
address of process partition
partition size (in bytes)

amount of free memory in application heap
process that launched this one
value of Ti cks at time of launch
total time spent using the CPU
location of the file

the high-level event record
reference constant

length of buffer

first byte of the message buffer

reserved

reserved

specifies whether block is extended

length (in bytes) of rest of parameter block
the Finder flags for the application file
flags that specify launch options

address of FSSpec that specifies the application file
to launch

process serial number

application’s preferred partition size
application’s minimum partition size
maximum partition size available
high-level event for launched application

2-39

labeuel\ ssao0id
N

CHAPTER 2

Process Manager

Trap Macros

Trap Macro Names

Pascal name Trap macro name
LaunchApplication _Launch
Exi t ToShel | _Exi t ToShel |

Trap Macros Requiring Routine Selectors
_OSDi spat ch

Selector Routine

$0036 LaunchDeskAccessory
$0037 Get Current Process
$0038 Get Next Process

$0039 Get Front Process

$003A Get Processl| nf ormat i on
$003B Set Front Process

$003C WakeUpPr ocess

$003D SanePr ocess

Result Codes

noErr 0 No error
par ankrr -50 Process serial number is invalid
mentul | Err -108 Not enough memory to allocate the partition size specified in the

"SI ZE' resource
r esNot Found -192 Resource not found
pr ocNot Found —-600 No eligible process with specified process serial number
mentragErr -601 Not enough room to launch application with special requirements
appModeErr -602 Addressing mode is 32-bit, but application is not 32-bit clean
appMentul | Err —605 Partition size specified in' SI ZE' resource is not big enough for launch
appl sDaenon —606 Application is background-only

2-40 Summary of the Process Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Processes and Tasks TOC
	 Introduction to Processes and Tasks
	 Process Manager TOC
	Process Manager
	About the Process Manager
	Using the Process Manager
	Getting Information About Other Processes
	Launching Other Applications
	Launching Desk Accessories
	Terminating an Application

	Process Manager Reference
	Constants
	Gestalt Selector and Response Bits
	Process-Identification Constants
	Launch Options

	Data Structures
	Process Serial Number
	Process Information Record
	Launch Parameter Block
	Application Parameters Record

	Routines
	Getting Process Information
	Launching Applications and Desk Accessories
	Terminating Processes

	Summary of the Process Manager
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Data Structures
	Trap Macros

	Result Codes

	 Time Manager TOC
	 Time Manager
	 Vertical Retrace Manager TOC
	 Vertical Retrace Manager
	 Notification Manager TOC
	 Notification Manager
	 Deferred Task Manager TOC
	 Deferred Task Manager
	 Segment Manager TOC
	 Segment Manager
	 Shutdown Manager TOC
	 Shutdown Manager
	 Glossary
	 Index
	 Colophon

