

C H A P T E R 2

2

P
rocess M

anager

Process Manager 2

This chapter describes the Process Manager, the part of the Macintosh Operating System
that provides a cooperative multitasking environment. The Process Manager controls
access to shared resources and manages the scheduling and execution of applications.
The Finder uses the Process Manager to launch your application when the user opens
either your application or a document created by your application. This chapter
discusses how your application can control its execution and get information—for
example, the number of free bytes in the application’s heap—about itself or any other
open application.

Although earlier versions of system software provide process management, the Process
Manager is available to your application only in system software version 7.0 and later.
The Process Manager provides a cooperative multitasking environment, similar to the
features provided by the MultiFinder option in earlier versions of system software. You
can use the Gestalt function to find out if the Process Manager routines are available
and to see which features of the Launch function are available.

You should read the chapter “Introduction to Processes and Tasks” in this book for an
overview of how the Process Manager schedules applications and loads them into
memory. If your application needs to launch other applications, you need to read this
chapter for information on the high-level function that lets your application launch other
applications and the routines you can use to get information about open applications.

To use this chapter, you need to be familiar with how your application uses memory, as
described in the chapter “Introduction to Memory Management” in Inside Macintosh:
Memory. You should also be familiar with how your application receives events, as
discussed in the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

This chapter provides a brief description of the Process Manager and then shows how
you can

■ control the execution of your application

■ get information about your application

■ launch other applications or desk accessories

■ get information about applications launched by your application

■ generate a list of all open applications and information about each one

■ terminate the execution of your application

About the Process Manager 2

The Process Manager schedules the processing of all applications and desk accessories. It
allows multiple applications to share CPU time and other resources. Applications share
the available memory and access to the CPU. Several applications can be open (loaded
into memory) at once, but only one uses the CPU at any one time.
About the Process Manager 2-3

C H A P T E R 2

Process Manager

Note
For a complete description of how the Process Manager schedules
applications and desk accessories for execution, see the chapter
“Introduction to Processes and Tasks” in this book. ◆

The Process Manager also provides a number of routines that allow you to control the
execution of processes and to get information about processes, including your own. You
can use the Process Manager routines to

■ control the execution of your application

■ get information about processes

■ launch other applications

■ launch desk accessories

The Process Manager assigns a process serial number to each open application (or desk
accessory, if it is not opened in the context of an application). The process serial number
is unique to each process on the local computer and is valid for a single boot of the
computer. You can use the process serial number to specify a particular process for most
Process Manager routines.

When a user opens or prints a file from the Finder, it uses the Process Manager to launch
the application that created the file. The Finder sets up the information from which your
application can determine which files to open or print. The Finder information includes a
list of files to open or print.

In system software version 7.0 and later, applications that support high-level events (that
is, that have the isHighLevelEventAware flag set in the 'SIZE' resource) receive the
Finder information through Apple events. The chapter “Apple Event Manager” in Inside
Macintosh: Interapplication Communication describes how your application processes
Apple events to open or print files.

Applications that do not support high-level events can call the CountAppFiles,
GetAppFiles, and ClrAppFiles routines or the GetAppParms routine to get the
Finder information. See the chapter “Introduction to File Management” in Inside
Macintosh: Files for information on these routines.

Using the Process Manager 2

This section shows how you can use the Process Manager to

■ obtain information about open processes

■ launch applications and desk accessories

■ terminate your application
2-4 Using the Process Manager

C H A P T E R 2

Process Manager

2

P
rocess M

anager

Getting Information About Other Processes 2
You can call the GetNextProcess, GetFrontProcess, or GetCurrentProcess
functions to get the process serial number of a process. The GetCurrentProcess
function returns the process serial number of the process currently executing, called the
current process. This is the process whose A5 world is currently valid; this process can
be in the background or foreground. The GetFrontProcess function returns the
process serial number of the foreground process. For example, if your process is running
in the background, you can use GetFrontProcess to determine which process is in the
foreground.

The Process Manager maintains a list of all open processes. You can specify the process
serial number of a process currently in the list and call GetNextProcess to get the
process serial number of the next process in the list. The interpretation of the value
of a process serial number and of the order of the list of processes is internal to the
Process Manager.

When specifying a particular process, use only a process serial number returned by a
high-level event or a Process Manager routine, or constants defined by the Process
Manager. You can use these constants to specify special processes:

CONST

kNoProcess = 0; {process doesn’t exist}

kSystemProcess = 1; {process belongs to OS}

kCurrentProcess = 2; {the current process}

In all Process Manager routines, the constant kNoProcess refers to a process that
doesn’t exist, the constant kSystemProcess refers to a process belonging to the
Operating System, and the constant kCurrentProcess refers to the current process.

To begin enumerating a list of processes, call the GetNextProcess function and specify
the constant kNoProcess as the parameter. In response, GetNextProcess returns the
process serial number of the first process in the list. You can use the returned process
serial number to get the process serial number of the next process in the list. When the
GetNextProcess function reaches the end of the list, it returns the constant
kNoProcess and the result code procNotFound.

You can also use a process serial number to specify a target application when your
application sends a high-level event. See the chapter “Event Manager” in Inside
Macintosh: Macintosh Toolbox Essentials for information on how to use a process serial
number when your application sends a high-level event.

You can call the GetProcessInformation function to obtain information about any
process, including your own. For example, for a specified process, you can find

■ the application’s name as it appears in the Application menu

■ the type and signature of the application

■ the number of bytes in the application partition

■ the number of free bytes in the application heap

■ the application that launched the application
Using the Process Manager 2-5

C H A P T E R 2

Process Manager

The GetProcessInformation function returns information in a process information
record, which is defined by the ProcessInfoRec data type.

TYPE ProcessInfoRec =

RECORD

processInfoLength: LongInt; {length of process info record}

processName: StringPtr; {name of this process}

processNumber: ProcessSerialNumber;

{psn of this process}

processType: LongInt; {file type of application file}

processSignature: OSType; {signature of application file}

processMode: LongInt; {'SIZE' resource flags}

processLocation: Ptr; {address of partition}

processSize: LongInt; {partition size}

processFreeMem: LongInt; {free bytes in heap}

processLauncher: ProcessSerialNumber;

{process that launched this one}

processLaunchDate: LongInt; {time when launched}

processActiveTime: LongInt; {accumulated CPU time}

processAppSpec: FSSpecPtr; {location of the file}

END;

You specify the values for three fields of the process information record:
processInfoLength, processName, and processAppSpec. You must either set the
processName and processAppSpec fields to NIL or set these fields to point to
memory that you have allocated for them. The GetProcessInformation function
returns information in all other fields of the process information record. See “Process
Information Record” on page 2-16 for a complete description of the fields of this record.

Listing 2-1 shows how you can use the GetNextProcess function with the
GetProcessInformation function to search the process list for a specific process.

Listing 2-1 Searching for a specific process

FUNCTION FindAProcess (signature: OSType;

VAR process: ProcessSerialNumber;

VAR InfoRec: ProcessInfoRec;

myFSSpecPtr: FSSpecPtr;

myName: Str31): Boolean;

BEGIN

FindAProcess := FALSE; {assume FALSE}

process.highLongOfPSN := 0;

process.lowLongOfPSN := kNoProcess; {start at the beginning}

InfoRec.processInfoLength := sizeof(ProcessInfoRec);
2-6 Using the Process Manager

C H A P T E R 2

Process Manager

2

P
rocess M

anager

InfoRec.processName := myName;

InfoRec.processAppSpec := myFSSpecPtr;

WHILE (GetNextProcess(process) = noErr) DO

BEGIN

IF GetProcessInformation(process, InfoRec) = noErr THEN

BEGIN

IF (InfoRec.processType = LongInt('APPL')) AND

(InfoRec.processSignature = signature) THEN

BEGIN {found the process}

FindAProcess := TRUE;

Exit(FindAProcess);

END;

END;

END; {WHILE}

END;

The code in Listing 2-1 searches the process list for the application with the specified
signature. For example, you might want to find a specific process so that you can send a
high-level event to it.

Launching Other Applications 2
You can launch other applications by calling the high-level LaunchApplication
function. This function lets your application control various options associated with
launching an application. For example, you can

■ allow the application to be launched in a partition smaller than the preferred size but
greater than the minimum size, or allow it to be launched only in a partition of the
preferred size

■ launch an application without terminating your own application, bring the launched
application to the front, and get information about the launched application

■ request that your application be notified if any application that it has launched
terminates

Earlier versions of system software used a shorter parameter block as a parameter to the
_Launch trap macro. The _Launch trap macro still supports the use of this parameter
block. Applications using the LaunchApplication function should use the new
launch parameter block (of type LaunchParamBlockRec). Use the Gestalt function
and specify the selector gestaltOSAttr to determine which launch features are
available.

Most applications don’t need to launch other applications. However, if your application
includes a desk accessory or another application, you might use either the high-level
LaunchApplication function to launch an application or the
LaunchDeskAccessory function to launch a desk accessory. For example, if you have
implemented a spelling checker as a separate application, you might use the
Using the Process Manager 2-7

C H A P T E R 2

Process Manager
LaunchApplication function to open the spelling checker when the user chooses
Check Spelling from one of your application’s menus.

You specify a launch parameter block as a parameter to the LaunchApplication
function. In this launch parameter block, you can specify the filename of the application
to launch, specify whether to allow launching only in a partition of the preferred size or
to allow launching in a smaller partition, and set various other options—for example,
whether your application should continue or terminate after it launches the specified
application.

The LaunchApplication function launches the application from the specified file and
returns the process serial number, preferred partition size, and minimum partition size if
the application is successfully launched.

Note that if you launch another application without terminating your application, the
launched application does not actually begin executing until you make a subsequent call
to WaitNextEvent or EventAvail.

The launch parameter block is defined by the LaunchParamBlockRec data type.

TYPE LaunchParamBlockRec =

RECORD

reserved1: LongInt; {reserved}

reserved2: Integer; {reserved}

launchBlockID: Integer; {extended block}

launchEPBLength: LongInt; {length of block}

launchFileFlags: Integer; {app’s Finder flags}

launchControlFlags: LaunchFlags; {launch options}

launchAppSpec: FSSpecPtr; {location of app’s file}

launchProcessSN: ProcessSerialNumber; {returned psn}

launchPreferredSize: LongInt; {returned pref size}

launchMinimumSize: LongInt; {returned min size}

launchAvailableSize: LongInt; {returned avail size}

launchAppParameters: AppParametersPtr; {high-level event}

END;

In the launchBlockID field, specify the constant extendedBlock to identify the
parameter block and to indicate that you are using the fields following it in the launch
parameter block.

CONST

extendedBlock = $4C43; {extended block}
2-8 Using the Process Manager

C H A P T E R 2

Process Manager

2

P
rocess M

anager
In the launchEPBLength field, specify the constant extendedBlockLen to indicate
the length of the remaining fields in the launch parameter block (that is, the length of the
fields following the launchEPBLength field). For compatibility, you should always
specify the length value in this field.

CONST

extendedBlockLen = sizeof(LaunchParamBlockRec) - 12;

The launchFileFlags field contains the Finder flags for the application file. (See the
chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for a
description of the Finder flags.) The LaunchApplication function sets this field for
you if you set the bit defined by the launchNoFileFlags constant in the
launchControlFlags field. Otherwise, you must get the Finder flags from the
application file and set this field yourself (by using the File Manager routine
FSpGetFInfo, for example).

In the launchControlFlags field, you specify various options that control how the
specified application is launched. See the section “Launch Options” on page 2-15 for
information on the launch control flags.

You specify the application to launch in the launchAppSpec field of the launch
parameter block. In this field, you specify a pointer to a file system specification record
(FSSpec). See the chapter “File Manager” in Inside Macintosh: Files for a complete
description of the file system specification record.

The LaunchApplication function sets the initial default directory of the application to
the parent directory of the application file.

If it successfully launches the application, LaunchApplication returns, in the
launchProcessSN field, a process serial number. You can use this number in Process
Manager routines to refer to this application.

The LaunchApplication function returns the launchPreferredSize and
launchMinimumSize fields of the launch parameter block. The values of these fields
are based on their corresponding values in the 'SIZE' resource. These values may be
greater than those specified in the application’s 'SIZE' resource because the returned
sizes include any adjustments to the size of the application’s stack. See the chapter
“Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials for information on how
the size of the application stack is adjusted. Values are always returned in these fields
whether or not the launch was successful. These values are 0 if an error occurred—for
example, if the application file could not be found.

The LaunchApplication function returns a value in the launchAvailableSize
field only when the memFullErr result code is returned. This value indicates the largest
partition size currently available for allocation.

The launchAppParameters field specifies the first high-level event sent to an
application. If you set this field to NIL, the LaunchApplication function
automatically creates and sends an Open Application event to the launched application.
(See the chapter “Apple Event Manager” in Inside Macintosh: Interapplication
Communication for a description of this event.) To send a particular high-level event to
Using the Process Manager 2-9

C H A P T E R 2

Process Manager
the launched application, you can specify a pointer to an application parameters record.
The application parameters record is defined by the data type AppParameters.

TYPE AppParameters =

RECORD

theMsgEvent: EventRecord; {event (high-level)}

eventRefCon: LongInt; {reference constant}

messageLength: LongInt; {length of buffer}

messageBuffer: ARRAY [0..0] OF SignedByte;

END;

You specify the high-level event in the fields theMsgEvent, eventRefCon,
messageLength, and messageBuffer.

Listing 2-2 demonstrates how you can use the LaunchApplication function.

Listing 2-2 Launching an application

PROCEDURE LaunchAnApplication (mySFReply: StandardFileReply);

VAR

myLaunchParams: LaunchParamBlockRec;

launchedProcessSN: ProcessSerialNumber;

launchErr: OSErr;

prefSize: LongInt;

minSize: LongInt;

availSize: LongInt;

BEGIN

WITH myLaunchParams DO

BEGIN

launchBlockID := extendedBlock;

launchEPBLength := extendedBlockLen;

launchFileFlags := 0;

launchControlFlags := launchContinue + launchNoFileFlags;

launchAppSpec := @mySFReply.sfFile;

launchAppParameters := NIL;

END;

launchErr := LaunchApplication(@myLaunchParams);

prefsize := myLaunchParams.launchPreferredSize;

minsize := myLaunchParams.launchMinimumSize;

IF launchErr = noErr THEN

launchedProcessSN := myLaunchParams.launchProcessSN

ELSE IF launchErr = memFullErr THEN

availSize := myLaunchParams.launchAvailableSize
2-10 Using the Process Manager

C H A P T E R 2

Process Manager

2

P
rocess M

anager
ELSE

DoError(launchErr);

END;

Listing 2-2 indicates which application file to launch by using a file system specification
record (perhaps returned by the StandardGetFile routine) and specifying, in the
launchAppSpec field, a pointer to this record. The launchControlFlags field
indicates that LaunchApplication should extract the Finder flags from the application
file, launch the application in a partition of the preferred size, bring the launched
application to the front, and not terminate the current process.

By default, LaunchApplication brings the launched application to the front and
sends the foreground application to the background. If you don’t want to bring an
application to the front when it is first launched, set the launchDontSwitch flag in the
launchControlFlags field of the launch parameter block.

In addition, if you want your application to continue to run after it launches another
application, you must set the launchContinue flag in the launchControlFlags
field of the launch parameter block. For a complete description of the available launch
control options, see “Launch Options” on page 2-15.

If you want your application to be notified about the termination of an application it has
launched, set the acceptAppDiedEvents flag in your 'SIZE' resource. If you set this
flag and an application launched by your application terminates, your application
receives an Application Died Apple event ('aevt' 'obit'). See “Terminating an
Application” on page 2-11 for more information on the Application Died event.

Launching Desk Accessories 2
In system software version 7.0 and later, the Process Manager launches a desk accessory
in its own partition when that desk accessory is opened, giving it a process serial
number and an entry in the process list. The Process Manager puts the name of the desk
accessory in the list of open applications in the Application menu and also gives the
active desk accessory its own About menu item in the Apple menu containing the name
of the desk accessory. This makes desk accessories more consistent with the user
interface of small applications.

Although you can use the LaunchDeskAccessory function to launch desk accessories,
you should use it only when your application needs to launch a desk accessory for some
reason other than the user’s choosing a desk accessory from the Apple menu. Beginning
in system software version 7.0, the Apple menu can contain any Finder object that the
user decides to add to the menu. When the user chooses any such user-added item from
the Apple menu, your application should respond by calling the OpenDeskAcc function
instead.

Terminating an Application 2
The Process Manager automatically terminates a process when the process either exits its
main routine or encounters a fatal error condition (such as an attempt to divide by 0).
Using the Process Manager 2-11

C H A P T E R 2

Process Manager
When a process terminates, the Process Manager takes care of any required cleanup
operations; these include removing the process from the list of open processes and
releasing the memory occupied by the application partition (as well as any temporary
memory the process still holds). If necessary, the Process Manager sends an Application
Died event to the process that launched the one about to terminate.

Your application can also terminate itself directly by calling the ExitToShell
procedure. In general, you need to call ExitToShell only if you want to terminate your
application without having it return from its main routine. This might be useful when
your initialization code detects that some essential system capability is not available (for
instance, when the computer running a stereo sound-editing application does not
support stereo sound playback). Listing 2-3 shows one way to exit gracefully in this
situation.

Listing 2-3 Terminating an application

PROCEDURE CheckForStereoSound;

VAR

myErr: OSErr; {result code from Gestalt}

myFeature: LongInt; {features bit flags from Gestalt}

myString: Str255; {text of alert message}

myItem: Integer; {item returned by StopAlert}

CONST

kAlertBoxID = 128; {resource ID of alert template}

kAlertStrings = 128; {resource ID of alert strings}

kNoStereoAlert = 5; {index of No Stereo alert text}

BEGIN

myErr := Gestalt(gestaltSoundAttr, myFeature);

IF myErr = noErr THEN

IF BTst(myFeature, gestaltStereoCapability) = FALSE THEN

BEGIN

GetIndString(myString, kAlertStrings, kNoStereoAlert);

ParamText(myString, '', '', '');

myItem := StopAlert(kAlertBoxID, NIL);

ExitToShell; {exit the application}

END

ELSE

DoError(myErr);

END;

The procedure CheckForStereoSound defined in Listing 2-3 checks whether the
computer supports stereo sound playback. If not, CheckForStereoSound notifies the
user by displaying an alert box and terminates the application by calling ExitToShell.
2-12 Using the Process Manager

C H A P T E R 2

Process Manager

2

P
rocess M

anager
Note
The ExitToShell procedure is the only means of terminating a
process. It is always called during process termination, whether by your
application itself, the Process Manager, or some other process. ◆

If your application launches another application that terminates, either normally or as
the result of an error, the Process Manager can notify your application by sending it an
Application Died event. To request this notification, you must set the acceptAppDied
flag in your application’s 'SIZE' resource. (For a complete description of the 'SIZE'
resource, see the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.)

The Process Manager gets the value of the keyErrorNumber parameter from the
system global variable DSErrCode. This value can be set either by the application before
it terminates or by the Operating System (when the application terminates as the result
of a hardware exception or other problem).

Process Manager Reference 2

This section describes the constants, data structures, and routines that are specific to the
Process Manager.

Constants 2
You can use Process Manager constants to get information about the attributes of the
Process Manager, identify certain special processes, and specify launch options.

Application Died—inform that an application has terminated

Event ID kAEApplicationDied

Required parameters

Keyword keyErrorNumber

Descriptor type typeLongInteger

Data A sign-extended OSErr value. A value of noErr indicates
normal termination; any other value indicates that the
application terminated because of an error.

Keyword keyProcessSerialNumber

Descriptor type typeProcessSerialNumber

Data The process serial number of the application that terminated.

Requested action None. This Apple event is sent only to provide information.
Process Manager Reference 2-13

C H A P T E R 2

Process Manager
Gestalt Selector and Response Bits 2

You can determine if the Process Manager is available and find out which features of the
launch routine are available by calling the Gestalt function with the selector
gestaltOSAttr.

CONST

gestaltOSAttr = 'os ';{O/S attributes}

The Gestalt function returns information by setting or clearing bits in the response
parameter. The following constants define the bits currently used:

CONST

gestaltLaunchCanReturn = 1; {can return from launch}

gestaltLaunchFullFileSpec = 2; {LaunchApplication available}

gestaltLaunchControl = 3; {Process Manager is available}

Constant descriptions

gestaltLaunchCanReturn
Set if the _Launch trap macro can return to the caller. The _Launch
trap macro in system software version 7.0 (and in earlier versions
running MultiFinder) gives your application the option to continue
running after it launches another application. In earlier versions of
system software not running MultiFinder, the _Launch trap macro
forces the launching application to quit.

gestaltLaunchFullFileSpec
Set if the launchControlFlags field supports control flags in
addition to the launchContinue flag, and if the _Launch trap can
process the launchAppSpec, launchProcessSN,
launchPreferredSize, launchMinimumSize,
launchAvailableSize, and launchAppParameters fields in
the launch parameter block.

gestaltLaunchControl
Set if the Process Manager is available.

Process-Identification Constants 2

The Process Manager provides three constants that can be used instead of a process
serial number to identify a process:

CONST

kNoProcess = 0; {process doesn’t exist}

kSystemProcess = 1; {process belongs to OS}

kCurrentProcess = 2; {the current process}
2-14 Process Manager Reference

C H A P T E R 2

Process Manager

2

P
rocess M

anager
Constant descriptions

kNoProcess Identifies a process that doesn’t exist.
kSystemProcess

Identifies a process that belongs to the Operating System.
kCurrentProcess

Identifies the current process.

Launch Options 2

When you use the LaunchApplication function, you specify the launch options in the
launchControlFlags field of the launch parameter block. These are the constants you
can specify in the launchControlFlags field:

CONST

launchContinue = $4000;

launchNoFileFlags = $0800;

launchUseMinimum = $0400;

launchDontSwitch = $0200;

launchInhibitDaemon = $0080;

Constant descriptions

launchContinue Set this flag if you want your application to continue after the
specified application is launched. If you do not set this flag,
LaunchApplication terminates your application after launching
the specified application, even if the launch fails.

launchNoFileFlags
Set this flag if you want the LaunchApplication function to
ignore any value specified in the launchFileFlags field. If you
set the launchNoFileFlags flag, the LaunchApplication
function extracts the Finder flags from the application file for you. If
you want to supply the file flags, clear the launchNoFileFlags
flag and specify the Finder flags in the launchFileFlags field of
the launch parameter block.

launchUseMinimum
Clear this flag if you want the LaunchApplication function to
attempt to launch the application in the preferred size (as specified
in the application’s 'SIZE' resource). If you set the
launchUseMinimum flag, the LaunchApplication function
attempts to launch the application using the largest available size
greater than or equal to the minimum size but less than the
preferred size. If the LaunchApplication function returns the
result code memFullErr or memFragErr, the application cannot be
launched under the current memory conditions.

launchDontSwitch
Set this flag if you do not want the launched application brought to
the front. If you set this flag, the launched application runs in the
background until the user brings the application to the front—for
Process Manager Reference 2-15

C H A P T E R 2

Process Manager
example, by clicking in one of the application’s windows. Note that
most applications expect to be launched in the foreground. If you
clear the launchDontSwitch flag, the launched application is
brought to the front, and your application is sent to the background.

launchInhibitDaemon
Set this flag if you do not want LaunchApplication to launch a
background-only application. (A background-only application has
the onlyBackground flag set in its 'SIZE' resource.)

Data Structures 2
This section describes the data structures that you use to provide information to the
Process Manager or that the Process Manager uses to return information to your
application.

Process Serial Number 2

The Process Manager uses process serial numbers to identify open processes. A process
serial number is a 64-bit quantity whose structure is defined by the
ProcessSerialNumber data type.

IMPORTANT

The meaning of the bits in a process serial number is internal to the
Process Manager. You should not attempt to interpret the value of the
process serial number. If you need to compare two process serial
numbers, call the SameProcess function. ▲

TYPE ProcessSerialNumber =

RECORD

highLongOfPSN: LongInt; {high-order 32 bits of psn}

lowLongOfPSN: LongInt; {low-order 32 bits of psn}

END;

Field descriptions

highLongOfPSN The high-order long integer of the process serial number.
lowLongOfPSN The low-order long integer of the process serial number.

Process Information Record 2

The GetProcessInformation function returns information in a process information
record, which is defined by the ProcessInfoRec data type.

TYPE ProcessInfoRec =

RECORD

processInfoLength: LongInt; {length of process info record}

processName: StringPtr; {name of this process}
2-16 Process Manager Reference

C H A P T E R 2

Process Manager

2

P
rocess M

anager
processNumber: ProcessSerialNumber;

{psn of this process}

processType: LongInt; {file type of application file}

processSignature: OSType; {signature of application file}

processMode: LongInt; {'SIZE' resource flags}

processLocation: Ptr; {address of partition}

processSize: LongInt; {partition size}

processFreeMem: LongInt; {free bytes in heap}

processLauncher: ProcessSerialNumber;

{process that launched this one}

processLaunchDate: LongInt; {time when launched}

processActiveTime: LongInt; {accumulated CPU time}

processAppSpec: FSSpecPtr; {location of the file}

END;

Field descriptions

processInfoLength
The number of bytes in the process information record. For
compatibility, you should specify the length of the record in this
field.

processName The name of the application or desk accessory. For applications, this
field contains the name of the application as designated by the user
at the time the application was opened. For example, for foreground
applications, the processName field contains the name as it
appears in the Application menu. For desk accessories, the
processName field contains the name of the 'DRVR' resource. You
must specify NIL in the processName field if you do not want the
application name or the desk accessory name returned. Otherwise,
you should allocate at least 32 bytes of storage for the string pointed
to by the processName field. Note that the processName field
specifies the name of either the application or the 'DRVR' resource,
whereas the processAppSpec field specifies the location of the file.

processNumber The process serial number. The process serial number is a 64-bit
number; the meaning of these bits is internal to the Process
Manager. You should not attempt to interpret the value of the
process serial number.

processType The file type of the application, generally 'APPL' for applications
and 'appe' for background-only applications launched at startup.
If the process is a desk accessory, this field specifies the type of the
file containing the 'DRVR' resource.

processSignature
The signature of the file containing the application or the 'DRVR'
resource (for example, the signature of the TeachText application is
'ttxt').
Process Manager Reference 2-17

C H A P T E R 2

Process Manager
processMode Process mode flags. These flags indicate whether the process is an
application or desk accessory. For applications, this field also
returns information specified in the application’s 'SIZE' resource.
This information is returned as flags. You can refer to these flags by
using these constants:

CONST

modeDeskAccessory = $00020000;

modeMultiLaunch = $00010000;

modeNeedSuspendResume = $00004000;

modeCanBackground = $00001000;

modeDoesActivateOnFGSwitch = $00000800;

modeOnlyBackground = $00000400;

modeGetFrontClicks = $00000200;

modeGetAppDiedMsg = $00000100;

mode32BitCompatible = $00000080;

modeHighLevelEventAware = $00000040;

modeLocalAndRemoteHLEvents = $00000020;

modeStationeryAware = $00000010;

modeUseTextEditServices = $00000008;

processLocation
The beginning address of the application partition.

processSize The number of bytes in the application partition (including the
heap, stack, and A5 world).

processFreeMem
The number of free bytes in the application heap.

processLauncher
The process serial number of the process that launched the
application or desk accessory. If the original launcher of the process
is no longer open, this field contains the constant kNoProcess.

processLaunchDate
The value of the Ticks global variable at the time that the process
was launched.

processActiveTime
The accumulated time, in ticks, during which the process has used
the CPU, including both foreground and background processing
time.

processAppSpec
The address of a file specification record that stores the location of
the file containing the application or 'DRVR' resource. You should
specify NIL in the processAppSpec field if you do not want the
FSSpec record of the file returned.
2-18 Process Manager Reference

C H A P T E R 2

Process Manager

2

P
rocess M

anager
Launch Parameter Block 2

You specify a launch parameter block as a parameter to the
LaunchApplication function. The launch parameter block is defined
by the LaunchParamBlockRec data type.

TYPE LaunchParamBlockRec =

RECORD

reserved1: LongInt; {reserved}

reserved2: Integer; {reserved}

launchBlockID: Integer; {extended block}

launchEPBLength: LongInt; {length of block}

launchFileFlags: Integer; {app’s Finder flags}

launchControlFlags: LaunchFlags; {launch options}

launchAppSpec: FSSpecPtr; {location of app’s file}

launchProcessSN: ProcessSerialNumber; {returned psn}

launchPreferredSize: LongInt; {returned pref size}

launchMinimumSize: LongInt; {returned min size}

launchAvailableSize: LongInt; {returned avail size}

launchAppParameters: AppParametersPtr; {high-level event}

END;

Field descriptions

reserved1 Reserved.
reserved2 Reserved.
launchBlockID A value that indicates whether you are using the fields following it

in the launch parameter block. Specify the constant
extendedBlock if you use the fields that follow it.

launchEPBLength
The length of the fields following this field in the launch parameter
block. Use the constant extendedBlockLen to specify this value.

launchFileFlags
The Finder flags for the application file. Set the
launchNoFileFlags constant in the launchControlFlags
field if you want the LaunchApplication function to extract the
Finder flags from the application file and to set the
launchFileFlags field for you.

launchControlFlags
The launch options that determine how the application is launched.
You can specify these constant values to set various options:

CONST

launchContinue = $4000;

launchNoFileFlags = $0800;
Process Manager Reference 2-19

C H A P T E R 2

Process Manager
launchUseMinimum = $0400;

launchDontSwitch = $0200;

launchInhibitDaemon = $0080;

See “Launch Options” on page 2-15 for a complete description of
these flags.

launchAppSpec A pointer to a file specification record that gives the location of the
application file to launch.

launchProcessSN
The process serial number returned to your application if the launch
is successful. You can use this process serial number in other
Process Manager routines to refer to the launched application.

launchPreferredSize
The preferred partition size for the launched application as
specified in the launched application’s 'SIZE' resource.
LaunchApplication sets this field to 0 if an error occurred or if
the application is already open.

launchMinimumSize
The minimum partition size for the launched application as
specified in the launched application’s 'SIZE' resource.
LaunchApplication sets this field to 0 if an error occurred or if
the application is already open.

launchAvailableSize
The maximum partition size that is available for allocation. This
value is returned to your application only if the memFullErr result
code is returned. If the application launch fails because of
insufficient memory, you can use this value to determine if there is
enough memory available to launch in the minimum size.

launchAppParameters
The first high-level event to send to the launched application. If you
set this field to NIL, LaunchApplication creates and sends the
Open Application Apple event to the launched application.

Application Parameters Record 2

You specify an application parameters record in the launchAppParameters field of
the launch parameter block whose address is passed to the LaunchApplication
function. This record specifies the first high-level event to be sent to the newly launched
application. The application parameters record is defined by the AppParameters
data type.

TYPE AppParameters =

RECORD

theMsgEvent: EventRecord; {event (high-level)}

eventRefCon: LongInt; {reference constant}
2-20 Process Manager Reference

C H A P T E R 2

Process Manager

2

P
rocess M

anager
messageLength: LongInt; {length of buffer}

messageBuffer: ARRAY [0..0] OF SignedByte;

END;

Field descriptions

theMsgEvent The event record specifying the first high-level event to be sent to
the launched application.

eventRefCon A reference constant. Your application can use this field for its own
purposes.

messageLength The length of the buffer specified by the messageBuffer field.
messageBuffer A buffer of data. The nature of this data varies according to the

event being sent.

Routines 2
This section describes the Process Manager routines you can use to get information
about any currently open applications, to control process execution, to launch other
applications, and to terminate your application.

Getting Process Information 2

You can use the Process Manager to get the process serial number of a particular process,
to generate a list of all open processes, to get information about processes, or to change
the scheduling status of a process.

GetCurrentProcess 2

Use the GetCurrentProcess function to get information about the current process,
if any.

FUNCTION GetCurrentProcess (VAR PSN: ProcessSerialNumber): OSErr;

PSN On output, the process serial number of the current process.

DESCRIPTION

The GetCurrentProcess function returns, in the PSN parameter, the process serial
number of the process that is currently running, that is, the one currently accessing the
CPU. This is the application associated with the CurrentA5 global variable. This
application can be running in either the foreground or the background.

Applications can use this function to find their own process serial number. Drivers can
use this function to find the process serial number of the current process. You can use the
returned process serial number in other Process Manager routines.
Process Manager Reference 2-21

C H A P T E R 2

Process Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetCurrentProcess function are

RESULT CODE

GetNextProcess 2

Use the GetNextProcess function to get information about the next process, if any, in
the Process Manager’s internal list of open processes.

FUNCTION GetNextProcess (VAR PSN: ProcessSerialNumber): OSErr;

PSN On input, the process serial number of a process. This number should be a
valid process serial number returned from LaunchApplication,
GetNextProcess, GetFrontProcess, or GetCurrentProcess, or
else the defined constant kNoProcess. On output, the process serial
number of the next process, or else kNoProcess.

DESCRIPTION

The Process Manager maintains a list of all open processes. You can derive this list by
using repetitive calls to GetNextProcess. Begin generating the list by calling
GetNextProcess and specifying the constant kNoProcess in the PSN parameter. You
can then use the returned process serial number to get the process serial number of the
next process. Note that the order of the list of processes is internal to the Process
Manager. When the end of the list is reached, GetNextProcess returns the constant
kNoProcess in the PSN parameter and the result code procNotFound.

You can use the returned process serial number in other Process Manager routines. You
can also use this process serial number to specify a target application when your
application sends a high-level event.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetNextProcess function are

Trap macro Selector

_OSDispatch $0037

noErr 0 No error

Trap macro Selector

_OSDispatch $0038
2-22 Process Manager Reference

C H A P T E R 2

Process Manager

2

P
rocess M

anager
RESULT CODES

GetProcessInformation 2

Use the GetProcessInformation function to get information about a specific process.

FUNCTION GetProcessInformation (PSN: ProcessSerialNumber;

VAR info: ProcessInfoRec): OSErr;

PSN The process serial number of a process. This number should be a valid
process serial number returned from LaunchApplication,
GetNextProcess, GetFrontProcess, GetCurrentProcess, or else a
high-level event. You can use the constant kCurrentProcess to get
information about the current process.

info A record containing information about the specified process.

DESCRIPTION

The GetProcessInformation function returns, in a process information record,
information about the specified process. The information returned in the info
parameter includes the application’s name as it appears in the Application menu, the
type and signature of the application, the address of the application partition, the
number of bytes in the application partition, the number of free bytes in the application
heap, the application that launched the application, the time at which the application
was launched, and the location of the application file. See “Getting Information About
Other Processes” on page 2-5 for the structure of the process information record.

The GetProcessInformation function also returns information about the
application’s 'SIZE' resource and indicates whether the process is an application or a
desk accessory.

You need to specify values for the processInfoLength, processName, and
processAppSpec fields of the process information record. Specify the length of the
process information record in the processInfoLength field. If you do not want
information returned in the processName and processAppSpec fields, specify NIL
for these fields. Otherwise, allocate at least 32 bytes of storage for the string pointed to
by the processName field and, in the processAppSpec field, specify a pointer to an
FSSpec record.

noErr 0 No error
paramErr –50 Process serial number is invalid
procNotFound –600 No process in the process list following the specified process
Process Manager Reference 2-23

C H A P T E R 2

Process Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetProcessInformation function are

SPECIAL CONSIDERATIONS

Do not call GetProcessInformation at interrupt time.

RESULT CODES

SameProcess 2

Use the SameProcess function to determine whether two process serial numbers
specify the same process.

FUNCTION SameProcess (PSN1, PSN2: ProcessSerialNumber;

VAR result: Boolean): OSErr;

PSN1 A process serial number.

PSN2 A process serial number.

result A Boolean value that indicates whether the process serial numbers passed
in PSN1 and PSN2 refer to the same process.

DESCRIPTION

The SameProcess function compares two process serial numbers and determines
whether they refer to the same process. If the process serial numbers specified in the
PSN1 and PSN2 parameters refer to the same process, the SameProcess function
returns TRUE in the result parameter; otherwise, it returns FALSE in the result
parameter.

Do not attempt to compare two process serial numbers by any means other than the
SameProcess function, because the interpretation of the bits in a process serial number
is internal to the Process Manager.

The values of PSN1 and PSN2 must be valid process serial numbers returned from
LaunchApplication, GetNextProcess, GetFrontProcess,
GetCurrentProcess, or a high-level event. You can also use the constant
kCurrentProcess to refer to the current process.

Trap macro Selector

_OSDispatch $003A

noErr 0 No error
paramErr –50 Process serial number is invalid
2-24 Process Manager Reference

C H A P T E R 2

Process Manager

2

P
rocess M

anager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SameProcess function are

RESULT CODES

GetFrontProcess 2

Use the GetFrontProcess function to get the process serial number of the front
process.

FUNCTION GetFrontProcess (VAR PSN: ProcessSerialNumber): OSErr;

PSN On output, the process serial number of the process running in the
foreground.

DESCRIPTION

The GetFrontProcess function returns, in the PSN parameter, the process serial
number of the process running in the foreground. You can use this function to determine
if your process or some other process is in the foreground. You can use the process serial
number returned in the PSN parameter in other Process Manager routines.

If no process is running in the foreground, GetFrontProcess returns the result code
procNotFound.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetFrontProcess function are

Trap macro Selector

_OSDispatch $003D

noErr 0 No error
paramErr –50 Process serial number is invalid

Trap macro Selector

_OSDispatch $0039
Process Manager Reference 2-25

C H A P T E R 2

Process Manager
RESULT CODES

SetFrontProcess 2

Use the SetFrontProcess function to set the front process.

FUNCTION SetFrontProcess (PSN: ProcessSerialNumber): OSErr;

PSN The process serial number of the process you want to move to the
foreground. This number should be a valid process serial number
returned from LaunchApplication, GetNextProcess,
GetFrontProcess, GetCurrentProcess, or a high-level event. You
can also use the constant kCurrentProcess to refer to the current
process.

DESCRIPTION

The SetFrontProcess function schedules the specified process to move to the
foreground. The specified process moves to the foreground after the current foreground
process makes a subsequent call to WaitNextEvent or EventAvail.

If the specified process serial number is invalid or if the specified process is a
background-only application, SetFrontProcess returns a nonzero result code and
does not change the current foreground process.

If a modal dialog box is the frontmost window, the specified process remains in the
background until the user dismisses the modal dialog box.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetFrontProcess function are

SPECIAL CONSIDERATIONS

Do not call SetFrontProcess interrupt time.

noErr 0 No error
paramErr –50 Process serial number is invalid
procNotFound –600 No process in the foreground

Trap macro Selector

_OSDispatch $003B
2-26 Process Manager Reference

C H A P T E R 2

Process Manager

2

P
rocess M

anager
RESULT CODES

WakeUpProcess 2

Use the WakeUpProcess function to make a process suspended by WaitNextEvent
eligible to receive CPU time.

FUNCTION WakeUpProcess (PSN: ProcessSerialNumber): OSErr;

PSN The process serial number of the process to be made eligible. This number
should be a valid process serial number returned from
LaunchApplication, GetNextProcess, GetFrontProcess,
GetCurrentProcess, or a high-level event. You can also use the
constant kCurrentProcess to refer to the current process.

DESCRIPTION

The WakeUpProcess function makes a process suspended by WaitNextEvent eligible
to receive CPU time. A process is suspended when the value of the sleep parameter in
the WaitNextEvent function is not 0 and no events for that process are pending in the
event queue. This process remains suspended until the time specified in the sleep
parameter expires or an event becomes available for that process. You can use
WakeUpProcess to make the process eligible for execution before the time specified in
the sleep parameter expires.

The WakeUpProcess function does not change the order of the processes scheduled for
execution; it only makes the specified process eligible for execution.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the WakeUpProcess function are

noErr 0 No error
procNotFound –600 Process with specified process serial number doesn’t exist

or process is suspended by high-level debugger
appIsDaemon –606 Specified process runs only in the background

Trap macro Selector

_OSDispatch $003C
Process Manager Reference 2-27

C H A P T E R 2

Process Manager
RESULT CODES

Launching Applications and Desk Accessories 2

Your application can use the LaunchApplication function to launch other
applications and the LaunchDeskAccessory function to launch desk accessories.

LaunchApplication 2

You can use the LaunchApplication function to launch an application.

FUNCTION LaunchApplication (LaunchParams: LaunchPBPtr): OSErr;

LaunchParams
A pointer to a launch parameter block specifying information about the
application to launch.

Parameter block

→ launchBlockID Integer Extended block

→ launchEPBLength LongInt Length of following fields

→ launchFileFlags Integer Finder flags for the application file

→ launchControlFlags LaunchFlags Flags for launch options

→ launchAppSpec FSSpecPtr Location of application file to launch

← launchProcessSN ProcessSerialNumber
Process serial number

← launchPreferredSize LongInt Preferred application partition size

← launchMinimumSize LongInt Minimum application partition size

← launchAvailableSize LongInt Maximum available partition size

→ launchAppParameters AppParametersPtr
High-level event for launched
application

DESCRIPTION

The LaunchApplication function launches the application from the specified file and
returns the process serial number, preferred partition size, and minimum partition size if
the application is successfully launched.

Note that if you launch another application without terminating your application, the
launched application is not actually executed until you make a subsequent call to
WaitNextEvent or EventAvail.

noErr 0 No error
procNotFound –600 Suspended process with specified process serial number

doesn’t exist
2-28 Process Manager Reference

C H A P T E R 2

Process Manager

2

P
rocess M

anager
Set the launchContinue flag in the launchControlFlags field of the launch
parameter block if you want your application to continue after the specified application
is launched. If you do not set this flag, LaunchApplication terminates your
application after launching the specified application, even if the launch fails.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and registers on entry and exit for LaunchApplication are

RESULT CODES

Trap macro

_Launch

Registers on entry

A0 Pointer to launch parameter block

Registers on exit

A0 Pointer to launch parameter block

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory to allocate the partition size

specified in the 'SIZE' resource
memFragErr –601 Not enough room to launch application with special

requirements
appModeErr –602 Memory mode is 32-bit, but application is not 32-bit clean
appMemFullErr –605 More memory is required for the partition size than the

amount specified in the 'SIZE'resource
appIsDaemon –606 Application runs only in the background, and launch

flags don’t allow background-only applications
Process Manager Reference 2-29

C H A P T E R 2

Process Manager
LaunchDeskAccessory 2

You can use the LaunchDeskAccessory function to launch desk accessories. Use this
function only when your application needs to launch a desk accessory for some reason
other than the user’s choosing one from the Apple menu. (When the user chooses any
Apple menu item that is not specific to your application, use the OpenDeskAcc
function.)

FUNCTION LaunchDeskAccessory (pFileSpec: FSSpecPtr;

pDAName: StringPtr): OSErr;

pFileSpec A pointer to a file system specification of the resource fork to search for
the specified desk accessory.

pDAName The name of the 'DRVR' resource to launch.

DESCRIPTION

The LaunchDeskAccessory function searches the resource fork of the file specified by
the pFileSpec parameter for the desk accessory with the 'DRVR' resource name
specified in the pDAName parameter. If the 'DRVR' resource name is found,
LaunchDeskAccessory launches the corresponding desk accessory. If the desk
accessory is already open, it is brought to the front.

Use the pFileSpec parameter to specify the file to search. Specify NIL as the value of
pFileSpec if you want to search the current resource file and the resource files opened
before it. Otherwise, use a pointer to an FSSpec record to specify the file.

In the pDAName parameter, specify the 'DRVR' resource name of the desk accessory to
launch. Specify NIL as the value of pDAName if you want to launch the first 'DRVR'
resource found in the file as returned by the Resource Manager. Because the
LaunchDeskAccessory function opens the specified resource file for exclusive access,
you cannot launch more than one desk accessory from the same resource file.

If the 'DRVR' resource is in a resource file that is already open by the current process or
if the driver is in the System file and the Option key is pressed, LaunchDeskAccessory
launches the desk accessory in the application’s heap. Otherwise, the desk accessory is
given its own partition and launched in the system heap.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LaunchDeskAccessory function are

RESULT CODES

Trap macro Selector

_OSDispatch $0036

noErr 0 No error
resNotFound –192 Resource not found
2-30 Process Manager Reference

C H A P T E R 2

Process Manager

2

P
rocess M

anager
Terminating Processes 2

You can use the ExitToShell procedure to have your application terminate itself
directly. In general, you need to call ExitToShell only if you want your application to
terminate without reaching the end of its main routine.

ExitToShell 2

Call ExitToShell to terminate your application directly.

PROCEDURE ExitToShell;

DESCRIPTION

The ExitToShell procedure terminates the calling process. The Process Manager
removes your application from the list of open processes and performs any other
necessary cleanup operations. In particular, all memory in your application partition and
any temporary memory still allocated to your application is released. If necessary, the
Application Died Apple event is sent to the process that launched your application.

If your application was the foreground process at the time it called ExitToShell, its
name is removed from the Application menu. The Process Manager selects a new
foreground process, switches it into the foreground, and propagates the scrap to the new
foreground application.

If your application was the last one running and the shell program is not the Finder, the
Process Manager displays a dialog box that gives the user the choice of restarting the
computer or shutting it down.

SPECIAL CONSIDERATIONS

Any trap patches installed by your application are removed immediately by
ExitToShell. They will not affect any trap calls made by ExitToShell itself.

RESULT CODES

When ExitToShell exits, the system global variable DSErrCode holds its result code.

SEE ALSO

See “Terminating an Application” on page 2-11 for details on the parameters passed to
the Application Died event.
Process Manager Reference 2-31

C H A P T E R 2

Process Manager
Summary of the Process Manager 2

Pascal Summary 2

Constants 2

CONST

{Gestalt selector and response bits}

gestaltOSAttr = 'os '; {O/S attributes selector}

gestaltLaunchCanReturn = 1; {can return from launch}

gestaltLaunchFullFileSpec = 2; {LaunchApplication is available}

gestaltLaunchControl = 3; {Process Manager is available}

{process identification constants}

kNoProcess = 0; {process doesn’t exist}

kSystemProcess = 1; {process belongs to OS}

kCurrentProcess = 2; {the current process}

{launch control flags}

launchContinue = $4000; {continue after launch}

launchNoFileFlags = $0800; {ignore launchFileFlags}

launchUseMinimum = $0400; {use minimum or greater size}

launchDontSwitch = $0200; {launch app. in background}

launchAllow24Bit = $0100; {reserved}

launchInhibitDaemon = $0080; {don't launch background app.}

{launch parameter block length and ID}

extendedBlockLen = sizeof(LaunchParamBlockRec) - 12;

extendedBlock = $4C43; {extended block}

{flags in processMode field}

modeDeskAccessory = $00020000; {process is desk acc}

modeMultiLaunch = $00010000; {from app file's flags}

modeNeedSuspendResume = $00004000; {from 'SIZE' resource}

modeCanBackground = $00001000; {from 'SIZE' resource}

modeDoesActivateOnFGSwitch = $00000800; {from 'SIZE' resource}

modeOnlyBackground = $00000400; {from 'SIZE' resource}

modeGetFrontClicks = $00000200; {from 'SIZE' resource}
2-32 Summary of the Process Manager

C H A P T E R 2

Process Manager

2

P
rocess M

anager
modeGetAppDiedMsg = $00000100; {from 'SIZE' resource}

mode32BitCompatible = $00000080; {from 'SIZE' resource}

modeHighLevelEventAware = $00000040; {from 'SIZE' resource}

modeLocalAndRemoteHLEvents = $00000020; {from 'SIZE' resource}

modeStationeryAware = $00000010; {from 'SIZE' resource}

modeUseTextEditServices = $00000008; {from 'SIZE' resource}

Data Types 2

Process Serial Number

TYPE

ProcessSerialNumber =

RECORD

highLongOfPSN: LongInt; {high-order 32 bits of psn}

lowLongOfPSN: LongInt; {low-order 32 bits of psn}

END;

ProcessSerialNumberPtr = ^ProcessSerialNumber;

Process Information Record

ProcessInfoRec =

RECORD

processInfoLength: LongInt; {length of record}

processName: StringPtr; {name of process}

processNumber: ProcessSerialNumber; {psn of the process}

processType: LongInt; {file type of app file}

processSignature: OSType; {signature of app file}

processMode: LongInt; {'SIZE' resource flags}

processLocation: Ptr; {address of partition}

processSize: LongInt; {partition size}

processFreeMem: LongInt; {free bytes in heap}

processLauncher: ProcessSerialNumber; {proc that launched this one}

processLaunchDate: LongInt; {time when launched}

processActiveTime: LongInt; {accumulated CPU time}

processAppSpec: FSSpecPtr; {location of the file}

END;

ProcessInfoRecPtr = ^ProcessInfoRec;
Summary of the Process Manager 2-33

C H A P T E R 2

Process Manager
Application Parameters Record

AppParameters =

RECORD

theMsgEvent: EventRecord; {event (high-level)}

eventRefCon: LongInt; {reference constant}

messageLength: LongInt; {length of buffer}

messageBuffer: ARRAY [0..0] OF SignedByte;

END;

AppParametersPtr = ^AppParameters;

Launch Parameter Block

LaunchFlags = Integer;

LaunchParamBlockRec =

RECORD

reserved1: LongInt; {reserved}

reserved2: Integer; {reserved}

launchBlockID: Integer; {extended block}

launchEPBLength: LongInt; {length of block}

launchFileFlags: Integer; {app’s Finder flags}

launchControlFlags: LaunchFlags; {launch options}

launchAppSpec: FSSpecPtr; {location of app’s file}

launchProcessSN: ProcessSerialNumber; {returned psn}

launchPreferredSize: LongInt; {returned pref size}

launchMinimumSize: LongInt; {returned min size}

launchAvailableSize: LongInt; {returned avail size}

launchAppParameters: AppParametersPtr; {high-level event}

END;

LaunchPBPtr = ^LaunchParamBlockRec;

Routines 2

Getting Process Information

FUNCTION GetCurrentProcess (VAR PSN: ProcessSerialNumber): OSErr;

FUNCTION GetNextProcess (VAR PSN: ProcessSerialNumber): OSErr;

FUNCTION GetProcessInformation
(PSN: ProcessSerialNumber;
VAR info: ProcessInfoRec): OSErr;
2-34 Summary of the Process Manager

C H A P T E R 2

Process Manager

2

P
rocess M

anager
FUNCTION SameProcess (PSN1: ProcessSerialNumber;
PSN2: ProcessSerialNumber;
VAR result: Boolean): OSErr;

FUNCTION GetFrontProcess (VAR PSN: ProcessSerialNumber): OSErr;

FUNCTION SetFrontProcess (PSN: ProcessSerialNumber): OSErr;

FUNCTION WakeUpProcess (PSN: ProcessSerialNumber): OSErr;

Launching Applications and Desk Accessories

FUNCTION LaunchApplication (LaunchParams: LaunchPBPtr): OSErr;

FUNCTION LaunchDeskAccessory (pFileSpec: FSSpecPtr; pDAName: StringPtr):
OSErr;

Terminating a Process

PROCEDURE ExitToShell;

C Summary 2

Constants 2

/*Gestalt selector and response bits*/

#define gestaltOSAttr 'os ' /*O/S attributes selector*/

#define gestaltLaunchCanReturn 1 /*can return from launch*/

#define gestaltLaunchFullFileSpec 2 /*LaunchApplication available*/

#define gestaltLaunchControl 3 /*Process Manager is available*/

/*process identification constants*/

enum {

kNoProcess 0, /*process doesn’t exist*/

kSystemProcess 1, /*process belongs to OS*/

kCurrentProcess 2 /*the current process*/

};

/*launch control flags*/

enum {

launchContinue = 0x4000, /*continue after launch*/

launchNoFileFlags = 0x0800, /*ignore launchFileFlags*/

launchUseMinimum = 0x0400, /*use minimum or greater size*/

launchDontSwitch = 0x0200, /*launch app. in background*/
Summary of the Process Manager 2-35

C H A P T E R 2

Process Manager
launchAllow24Bit = 0x0100, /*reserved*/

launchInhibitDaemon = 0x0080 /*don't launch background app.*/

};

/*launch parameter block length and ID*/

#define extendedBlockLen (sizeof(LaunchParamBlockRec) - 12)

#define extendedBlock ((unsigned short)'LC')

/*flags in processMode field*/

enum {

modeDeskAccessory = 0x00020000, /*process is desk acc*/

modeMultiLaunch = 0x00010000, /*from app file's flags*/

modeNeedSuspendResume = 0x00004000, /*from 'SIZE' resource*/

modeCanBackground = 0x00001000, /*from 'SIZE' resource*/

modeDoesActivateOnFGSwitch = 0x00000800, /*from 'SIZE' resource*/

modeOnlyBackground = 0x00000400, /*from 'SIZE' resource*/

modeGetFrontClicks = 0x00000200, /*from 'SIZE' resource*/

modeGetAppDiedMsg = 0x00000100, /*from 'SIZE' resource*/

mode32BitCompatible = 0x00000080, /*from 'SIZE' resource*/

modeHighLevelEventAware = 0x00000040, /*from 'SIZE' resource*/

modeLocalAndRemoteHLEvents = 0x00000020, /*from 'SIZE' resource*/

modeStationeryAware = 0x00000010, /*from 'SIZE' resource*/

modeUseTextEditServices = 0x00000008 /*from 'SIZE' resource*/

};

Data Types 2

Process Serial Number

struct ProcessSerialNumber {

unsigned long highLongOfPSN; /*high-order 32 bits of psn*/

unsigned long lowLongOfPSN; /*low-order 32 bits of psn*/

};

typedef struct ProcessSerialNumber ProcessSerialNumber;

typedef ProcessSerialNumber *ProcessSerialNumberPtr;

Process Information Record

struct ProcessInfoRec {

unsigned long processInfoLength; /*length of record*/

StringPtr processName; /*name of process*/

ProcessSerialNumber processNumber; /*psn of the process*/
2-36 Summary of the Process Manager

C H A P T E R 2

Process Manager

2

P
rocess M

anager
unsigned long processType; /*file type of app file*/

OSType processSignature; /*signature of app file*/

unsigned long processMode; /*'SIZE' resource flags*/

Ptr processLocation; /*address of partition*/

unsigned long processSize; /*partition size*/

unsigned long processFreeMem; /*free bytes in heap*/

ProcessSerialNumber processLauncher; /*proc that launched this */

/* one*/

unsigned long processLaunchDate; /*time when launched*/

unsigned long processActiveTime; /*accumulated CPU time*/

FSSpecPtr processAppSpec; /*location of the file*/

};

typedef struct ProcessInfoRec ProcessInfoRec;

typedef ProcessInfoRec *ProcessInfoRecPtr;

Application Parameters Record

struct AppParameters {

EventRecord theMsgEvent; /*event (high-level)*/

unsigned long eventRefCon; /*reference constant*/

unsigned long messageLength; /*length of buffer*/

};

typedef struct AppParameters AppParameters;

typedef AppParameters *AppParametersPtr;

Launch Parameter Block

typedef unsigned short LaunchFlags;

struct LaunchParamBlockRec {

unsigned long reserved1; /*reserved*/

unsigned short reserved2; /*reserved*/

unsigned short launchBlockID; /*extended block*/

unsigned long launchEPBLength; /*length of block*/

unsigned short launchFileFlags; /*app’s Finder flags*/

LaunchFlags launchControlFlags; /*launch options*/

FSSpecPtr launchAppSpec; /*location of app’s file*/

ProcessSerialNumber launchProcessSN; /*returned psn*/

unsigned long launchPreferredSize; /*returned pref size*/

unsigned long launchMinimumSize; /*returned min size*/

unsigned long launchAvailableSize; /*returned avail size*/

AppParametersPtr launchAppParameters; /*high-level event*/
Summary of the Process Manager 2-37

C H A P T E R 2

Process Manager
};

typedef struct LaunchParamBlockRec LaunchParamBlockRec;

typedef LaunchParamBlockRec *LaunchPBPtr;

Routines 2

Getting Process Information

pascal OSErr GetCurrentProcess
(ProcessSerialNumber *PSN);

pascal OSErr GetNextProcess (ProcessSerialNumber *PSN);

pascal OSErr GetProcessInformation
(const ProcessSerialNumber *PSN,
ProcessInfoRecPtr info);

pascal OSErr SameProcess (const ProcessSerialNumber *PSN1,
const ProcessSerialNumber *PSN2,
Boolean *result);

pascal OSErr GetFrontProcess
(ProcessSerialNumber *PSN);

pascal OSErr SetFrontProcess
(const ProcessSerialNumber *PSN);

pascal OSErr WakeUpProcess (const ProcessSerialNumber *PSN);

Launching Applications and Desk Accessories

pascal OSErr LaunchApplication
(const LaunchParamBlockRec *LaunchParams);

pascal OSErr LaunchDeskAccessory
(const FSSpec *pFileSpec,
ConstStr255Param pDAName);

Terminating a Process

pascal void ExitToShell (void);
2-38 Summary of the Process Manager

C H A P T E R 2

Process Manager

2

P
rocess M

anager
Assembly-Language Summary 2

Data Structures 2

Process Serial Number

Process Information Record

Application Parameters Record

Launch Parameter Block

0 highLongOfPSN long high-order 32-bits of process serial number
4 lowLongOfPSN long low-order 32-bits of process serial number

0 processInfoLength long length of this record
4 processName long name of process
8 processNumber 2 longs process serial number of the process

16 processType long type of application file
20 processSignature long signature of application file
24 processMode long flags from 'SIZE' resource
28 processLocation long address of process partition
32 processSize long partition size (in bytes)
36 processFreeMem long amount of free memory in application heap
40 processLauncher 2 longs process that launched this one
48 processLaunchDate long value of Ticks at time of launch
52 processActiveTime long total time spent using the CPU
56 processAppSpec long location of the file

0 theMsgEvent 16 bytes the high-level event record
16 eventRefCon long reference constant
20 messageLength long length of buffer
24 messageBuffer byte first byte of the message buffer

0 reserved1 long reserved
4 reserved2 word reserved
6 launchBlockID word specifies whether block is extended
8 launchEPBLength long length (in bytes) of rest of parameter block

12 launchFileFlags word the Finder flags for the application file
14 launchControlFlags word flags that specify launch options
16 launchAppSpec long address of FSSpec that specifies the application file

to launch
20 launchProcessSN 2 longs process serial number
28 launchPreferredSize long application’s preferred partition size
32 launchMinimumSize long application’s minimum partition size
36 launchAvailableSize long maximum partition size available
40 launchAppParameters long high-level event for launched application
Summary of the Process Manager 2-39

C H A P T E R 2

Process Manager
Trap Macros 2

Trap Macro Names

Trap Macros Requiring Routine Selectors

_OSDispatch

Result Codes 2

Pascal name Trap macro name

LaunchApplication _Launch

ExitToShell _ExitToShell

Selector Routine

$0036 LaunchDeskAccessory

$0037 GetCurrentProcess

$0038 GetNextProcess

$0039 GetFrontProcess

$003A GetProcessInformation

$003B SetFrontProcess

$003C WakeUpProcess

$003D SameProcess

noErr 0 No error
paramErr –50 Process serial number is invalid
memFullErr –108 Not enough memory to allocate the partition size specified in the

'SIZE' resource
resNotFound –192 Resource not found
procNotFound –600 No eligible process with specified process serial number
memFragErr –601 Not enough room to launch application with special requirements
appModeErr –602 Addressing mode is 32-bit, but application is not 32-bit clean
appMemFullErr –605 Partition size specified in 'SIZE' resource is not big enough for launch
appIsDaemon –606 Application is background-only
2-40 Summary of the Process Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Processes and Tasks TOC
	 Introduction to Processes and Tasks
	 Process Manager TOC
	Process Manager
	About the Process Manager
	Using the Process Manager
	Getting Information About Other Processes
	Launching Other Applications
	Launching Desk Accessories
	Terminating an Application

	Process Manager Reference
	Constants
	Gestalt Selector and Response Bits
	Process-Identification Constants
	Launch Options

	Data Structures
	Process Serial Number
	Process Information Record
	Launch Parameter Block
	Application Parameters Record

	Routines
	Getting Process Information
	Launching Applications and Desk Accessories
	Terminating Processes

	Summary of the Process Manager
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Data Structures
	Trap Macros

	Result Codes

	 Time Manager TOC
	 Time Manager
	 Vertical Retrace Manager TOC
	 Vertical Retrace Manager
	 Notification Manager TOC
	 Notification Manager
	 Deferred Task Manager TOC
	 Deferred Task Manager
	 Segment Manager TOC
	 Segment Manager
	 Shutdown Manager TOC
	 Shutdown Manager
	 Glossary
	 Index
	 Colophon

