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But ,/(AX)* + ( ~ y ) ~  = IAzI, and so 

Also, + i.s2 tends to 0 as (Ax, Ay) approaches (0, 0). So the last term on the right 
in equation (5) tends to 0 as the variable Az = Ax + i Ay tends to 0. This means that 
the limit of the left-hand side of equation (5) exists and that 

where the right-hand side is to be evaluated at (xo, yo). 

EXAMPLE 1. Consider the exponential function 

x iy f ( z ) = e z = e  e ( Z  = x + iy), 

some of whose mapping properties were discussed in Sec. 13. In view of Euler's 
formula (Sec. 6), this function can, of course, be written 

f (2) = ex cos y + iex sin y ,  
-'i 

where y is to be taken in radians when cos y and sin y are evaluated. Then 
' x . r e i  - 
t .  

u (x ,y )=eXcosy  and v(x,y) =en siny. s'. - 2 

Since u, = v, and uy = -vX everywhere and since these derivatives are everywhere 
continuous, the conditions in the theorem are satisfied at all points in the complex 
plane. Thus f '(2) exists everywhere, and 

\. 
ff(z) = u x  + iv, =ex  cosy + iex siny. 

Note that f '(2) = f (2). 

EXAMPLE 2. It also follows from the theorem in this section that the function 
f (z) = 1z 12, whose components are 

u ( x , y ) = ~ ~ + ~ ~  and v(x,y)=O, 

has a derivative at z = 0. In fact, f '(0) = 0 + iO = 0 (compare Example 2, Sec. 18). We 
saw in Example 2, Sec. 20, that this function cannot have a derivative at any nonzero 
point since the Cauchy-Riemann equations are not satisfied at such points. 

22. POLAR COORDINATES 
Assuming that zo # 0, we shall in this section use the coordinate transformation 
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to restate the theorem in Sec. 21 in polar coordinates. 
Depending on whether we write 

when w = f (z), the real and imaginary parts of w = u + i v  are expressed in terms of 
either the variables x and y or r and 8. Suppose that the first-order partial derivatives 
of u and v with respect to x and y exist everywhere in some neighborhood of a given 
nonzero point zo and are continuous at that point. The first-order partial derivatives 
with respect to r and 0 also have these properties, and the chain rule for differentiating 
real-valued functions of two real variables can be used to write them in terms of the 
ones with respect to x and y . More precisely, since 

a~ - au ax au ay au au ax au ay 
I_-- +--  -= - -  + - -  
ar ax ar ay ar ' a0 ax ae a y  ae' 

one can write 

(2) u, = u, cos0 + u,. sine, us = -u,r sine + u y r  C O S ~ .  

Likewise, 

If the partial derivatives with respect to x and y also satisfy the Cauchy-Riemann 
equations 

at 20, equations (3) become 

at that point. It is then clear from equations (2) and (5) that 

at the point zo. 
If, on the other hand, equations (6) are known to hold at 20, it is straightforward 

to show (Exercise 7) that equations (4) must hold there. Equations (6) are, therefore, 
an alternative form of the Cauchy-Riemann equations (4). 

We can now restate the theorem in Sec. 21 using polar coordinates. 

Theorem. Let the function 

be dejned throughout some e neighborhood of a nonzero point zo = ro exp(ieO), and 
suppose that thejrst-orderpartial derivatives of the functions u and v with respect to r 
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and 0 exist everywhere in that neighborhood. Ifthose partial derivatives are continuous 
at (ro, 6,) and satisfy the polar form 

of the Cauchy-Riemann equations at (ro, go), then f ' (zo) exists. 

The derivative f '(zo) here can be written (see Exercise 8) 

where the right-hand side is to be evaluated at (ro, 00), 

EXAMPLE 1. Consider the function 

1 1 f ( z ) = - =  - - 1 
- Ae-" = -(COS e - i sin 6 )  ( z  # 0). z reie r r 

Since 

cos 0 sin 0 
u(r, 0) = - and v(r, 0) = --, 

the conditions in the above theorem are satisfied at every nonzero point z = rei0 in the 
plane. In particular, the Cauchy-Riemann equations 

cos 0 sin 9 
ru, = -- = v e  and UQ=----rv, - 

r r 

are satisfied. Hence the derivative of f exists when z # 0; and, according to expres- 
sion (7), 

cos 9 sin 8 
f'(z) = e - ' ~  (- - + -) = -e 

-is e-iO - - - 1 - 1 - -- 
r2 r2 r* (r eiO)2 z2 ' 

EXAMPLE 2. The theorem can be used to show that, when a is a fixed real number, 
the function 

has a derivative everywhere in its domain of definition. Here 

0 0 
u ( r , ~ ) = f i c o s -  and v ( r , 9 ) = f i s i n -  

3 3 ' 

Inasmuch as 

f i  e 
ru, = - 

e 
C O S - = v e  and ue=- - s in -= -  

3 3 3 3 rut- 
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and since the other conditions in the theorem are satisfied, the derivative f ' ( z )  exists 
at each point where f (z) is defined. Furthermore, expression (7) tells us that 

f = e-'e 
1 0 1 sin " , 

cos - + i 
3 3 ( ~ ) ~  3 

Note that when a specific point z is taken in the domain of definition of f ,  the 
value f ( z )  is one value of z ' / ~  (see Sec. 11). Hence this last expression for f '(z) can 
be put in the form 

when that value is taken. Derivatives of such power functions will be elaborated on in 
Chap. 3 (Sec. 32). 

EXERCISES 
1. Use the theorem in Sec. 20 to show that f '(z) does not exist at any point if 

(a) f (z)  = T ;  (6) f (z) = z  - t; (c) f(z) = 2 x  +ixy2; (d) f(z) =exe- i~ .  

2. Use the theorem in Sec. 21 to show that f '(2) and its derivative f "(z) exist everywhere, 
and find f "(2) when 

(a) f ( z )  = iz + 2; (b)  f (z) = e-xe-iy; 

(c) f (z) = z3; (d)  f (z) = cos x cosh y - i sin x sinh y. 

Ans. (b) f"(z) = f ( z ) ;  (d) f "(z) = - f (z). 

3. From results obtained in Secs. 20 and 21, determine where f '(z) exists and find its value 
when 

(a) f ( 2 )  = l/z; (b) f (z) = n2 + iy2; (c) f (z) = z Im z. 
Ans.(a) f'(z)=-l/z2 (Z #0); (b) f f ( x+ ix )=2x ;  (c) ff(0)=O. 

4. Use the theorem in Sec. 22 to show that each of these functions is differentiable in the 
indicated domain of definition, and then use expression (7) in that section to find f '(z): 

(a) f (z) = 1/z4 (2 # 0); 
(b) f ( z )  = 2/Fe'V2 (r > 0, a < e < CY + 2 ~ ) ;  
(c) f ( z )  = e-*cos(ln r) + ie-"sin(1n r) (r > 0 , 0  < 8 < 2 ~ ) .  

1 
APZS. (b) f '(2) = - f (2 )  (c) ff(z)=i-. 

2f (2) ' z 
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5. Show that when f ( 2 )  = x3 + i (1 - y)3, it is legitimate to write 

f ' ( z )  = u, + iv ,  = 3x 2 

only when z = i . 
6. Let u and v denote the real and imaginary components of the function f defined by the 

equations 

f ( 2 )  = 
when z #0, 

( 0 when z = 0. 

Verify that the Cauchy-Riemann equations u, = v y  and uy = -u, are satisfied at the 
origin z = (0,O). [Compare Exercise 9, Sec. 19, where it is shown that f '(0) nevertheless 
fails to exist.] 

7. Solve equations (2), Sec. 22, for u, and u, to show that 

sin Q cos 8 
ux = ur C O S ~  - u, - , uy=ursin9+ue-.  

r r 

Then use these equations and similar ones for v, and v, to show that, in Sec. 22, equations 
(4) are satisfied at a point zo if equations (6)  are satisfied there. Thus complete the 
verification that equations (6), Sec. 22, are the Cauchy-Riemann equations in polar form. 

8. Let a function f ( z )  = u + i v  be differentiable at a nonzero point zo = ro exp(ieo). Use 
the expressions for u, and v, found in Exercise 7, together with the polar form (6), Sec. 
22, of the Cauchy-Riemann equations, to rewrite the expression 

in Sec. 21 as 

where u, and v, are to be evaluated at (ro, 80). 

9. (a) With the aid of the polar form (ti), Sec. 22, of the Cauchy-Riemann equations, derive 
the alternative form 

of the expression for f '(so) found in Exercise 8. 
(b )  Use the expression for f ' ( z o )  in part (a) to show that the derivative of the function 

f (z) = l / z  ( z  # 0) in Example 1 ,  Sec. 22, is f ' (z)  = -1/z2. 

10. (a) Recall (Sec. 5) that if z = x + iy, then 

z + z  x=- 2 - z  and y = - .  
2 2i 
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By formally applying the chain rule in calculus to a function F ( x ,  y) of two real 
variables, derive the expression 

(b) Define the operator 

suggested by part (a),  to show that if the first-order partial derivatives of the real 
and imaginary parts of a function f (2) = u ( x ,  y)  + i v ( x ,  y) satisfy the Cauchy- 
Riemann equations, then 

Thus derive the complex form a f /a? = 0 of the Cauchy-Riemann equations. 

23, ANALYTIC FUNCTIONS 
We are now ready to introduce the concept of an analytic function. A function f of the 
complex variable z is analytic in an open set if it has a derivative at each point in that 
set.* If we should speak of a function f that is analytic in a set S which is not open, 
it is to be understood that f is analytic in an open set containing S .  In particular, f is 
analytic at a point z0 if it is analytic throughout some neighborhood of zo. 

We note, for instance, that the function f (z) = l / z  is analytic at each nonzero 
point in the finite plane. But the function f (z) = lz12 is not analytic at any point since 
its derivative exists only at z = 0 and not throughout any neighborhood. (See Example 
2, Sec. 18.) 

An entire function is a function that is analytic at each point in the entire finite 
plane. Since the derivative of a polynomial exists everywhere, it follows that every 
polynomial is an entire function. 

If a function f fails to be analytic at a point zo but is analytic at some point 
in every neighborhood of zo, then zo is called a singular point, or singularity, of f .  
The point z = 0 is evidently a singular point of the function f ( 2 )  = l/z. The function 
f ( z )  = lzl2, on the other hand, has no singular points since it is nowhere analytic. 

A necessary, but by no means sufficient, condition for a function f' to be analytic 
in a domain D is clearly the continuity of f throughout D. Satisfaction of the Cauchy- 
Riemann equations is also necessary, but not sufficient. Sufficient conditions for 
analyticity in D are provided by the theorems in Secs. 21 and 22. 

Other useful sufficient conditions are obtained from the differentiation formulas 
in Sec. 19. The derivatives of the sum and product of two functions exist wherever the 

*The terms regular and holomorphic are also used in the literature to denote analyticity. 
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functions themselves have derivatives. Thus, if two functions are analytic in a domain 
D, their sum and their product are both analytic in D. Similarly, their quotient is 
analytic in D provided the function in the denominator does not vartish at any point in 
D. In particular, the quotient P ( z ) /  Q (z) of two polynomials is analytic in any domain 
throughout which Q(z) # 0. 

From the chain rule for the derivative of a composite function, we find that 
a composition of two analytic functions is analytic. More precisely, suppose that a 
function f (z) is analytic in a domain D and that the image (Sec. 12) of D under the 
transformation w = f (2 )  is contained in the domain of definition of a function g(w). 
Then the composition g[ f ( z ) ]  is analytic in D, with derivative 

The following theorem is especially useful, in addition to being expected. 

1, Theorem. I f  fr(z)  = 0 everywhere in a domain D, then f (z) must be constant 
throughout D. 

We start the proof by writing f ( z )  = u (x , y) + i v (x , y ) .  Assuming that f '(2) = 0 
in D, we note that ux + i v ,  = 0; and, in view of the Cauchy-Riemann equations, 
v - i u = 0. Consequently, 

at each point in D. 
Next, we show that u (x, y) is constant along any line segment L extending from 

a point P to a point P' and lying entirely in D. We let s denote the distance along L 
from the point P and let U denote the unit vector along L in the direction of increasing 
s (see Fig. 30). We know from calculus that the directional derivative dulds  can be 
written as the dot product 

du - = (grad u) U, 
ds 

FIGURE 30 
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where grad u is the gradient vector 

(2) grad u = u,i + u, j. 

Because u, and u, are zero everywhere in D, then, grad u is the zero vector at all 
points on L. Hence it follows from equation (1) that the derivative dulds  is zero along 
L; and this means that u is constant on L.  

Finally, since there is always a finite number of such line segments, joined end 
to end, connecting any two points P and Q in D (Sec. lo), the values of u at P and 
Q must be the same. We may conclude, then, that there is a real constant a such that 
u (x, y) = a throughout D. Similarly, u ( x ,  y) = b; and we find that f (z) = a + bi at 
each point in D. 

24. EXAMPLES 
As pointed out in Sec. 23, it is often possible to determine where a given function is 
analytic by simply recalling various differentiation formulas in Sec. 19. 

EXAMPLE 1. The quotient 

is evidently analytic throughout the z plane except for the singular points z = && 
and z = f i. The analyticity is due to the existence of familiar differentiation formulas, 
which need be applied only if the expression for f '(z) is wanted. 

When a function is given in terms of its component functions u(x ,  y) and v(x, y), 
its analyticity can be demonstrated by direct application of the Cauchy-Riemann 
equations. 

EXAMPLE 2. When 

f (z) = cosh x cos y + i sinh x sin y , 

the component functions are 

u(x, y) =coshxcosy and v(x,y)=sinhx siny. 

Because 

u, = sinh x cos y = v, and u,  = - cosh x sin y = -v, 

everywhere, it is clear from the theorem in Sec. 2 1 that f is entire. 
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Finally, we illustrate how the theorems in the last four sections, in particular the 
one in Sec. 23, can be used to obtain some important properties of analytic functions. 

EXAMPLE 3. Suppose that a function 

and its conjugate 

are both analytic in a given domain D.  It is easy to show that f ( z )  must be constant 
throughout D. 

To do this, we write f (z) as 

f (z> = U(x, y )  + i V ( x ,  y), 

where 

(1) U(x, y) =u (x ,y )  and V(x, y)=-v(x,y).  

Because of the analyticity of f ( z ) ,  the Cauchy-Riernann equations 

- 
hold in D, according to the theorem in Sec. 20. Also, the analyticity o f f  ( 2 )  in D tells 
us that 

u x = v y ,  uy=-v,. 
In view of relations (I), these last two equations can be written 

(3) Ux = - -vy, U y  - v,. 

By adding corresponding sides of the first of equations (2) and (3), we find that 
u, = 0 in D. Similarly, subtraction involving corresponding sides of the second of 
equations (2) and (3) reveals that v, = 0. According to expression (8) in Sec. 20, then, 

and it follows from the theorem in Sec. 23 that f ( z )  is constant throughout D. 

EXERCISES 
1. Apply the theorem in Sec. 21 to verify that each of these functions is entire: 

(a) f ( 2 )  = 3x + y + i (3y - x ) ;  (b)  f ( 2 )  = sin x cosh y + i cos x sinh y; 

(c) f ( z )  = e-Y sin x - ie-Y cos x; ( d )  f ( z )  = (z2 - 2)e-"e-'Y. 
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2, With the aid of the theorem in Sec. 20, show that each of these functions is nowhere 
analytic: 

y ix (a)  f ( z ) = x y + i y ;  (b) f ( z )  = 2 x y + i ( x 2 - y 2 ) ;  (c) f ( z )  = e  e . 
3. State why a composition of two entire functions is entire. Also, state why any linear 

combination cl f i (z)  + c2 f2(z) of two entire functions, where cl and c2 are complex 
constants, is entire. 

4. In each case, determine the singular points of the function and state why the function is 
analytic everywhere except at those points: 

Ans.(a)z=O, f i ;  ( b ) z =  1, 2; ( c ) z  = - 2 ,  - l f  i .  

5. According to Exercise 4(b), Sec, 22, the function 

is analytic in its domain of definition, with derivative 

Show that the composite function G ( z )  = g(2z - 2 + i) is analytic in the half plane 
x > 1, with derivative 

Suggestion: Observe that Re(2z - 2 + i) > 0 when x > 1. 

6. Use results in Sec, 22 to verify that the function 

is analytic in the indicated domain of definition, with derivative g'(z) = l / z .  Then show 
that the composite function G ( z )  = g(z2 + 1) is analytic in the quadrant x > 0, y > 0, 
with derivative 

Suggestion: Observe that 1m(z2 + 1) > 0 when x > 0 ,  y > 0. 

7. Let a function f ( z )  he analytic in a domain D. Prove that f ( z )  must be constant 
throughout D if 
(a)  f ( z )  is real-valued for all z in D; (b) If (z)l is constant throughout D. 

Suggestion: Use the Cauchy-Riemann equations and the theorem in Sec. 23 to 
prove part (a).  To prove part (b), observe that 

then use the main result in Example 3, Sec. 24. 



25. HARMONIC FUNCTIONS 
A real-valued function H of two real variables x and y is said to be harmonic in a given 
domain of the xy plane if, throughout that domain, it has continuous partial derivatives 
of the first and second order and satisfies the partial differential equation 

known as Laplace 's equation. 
Harmonic functions play an important role in applied mathematics. For example, 

the temperatures T (x, y) in thin plates lying in the xy plane are often harmonic. A 
function V(x, y) is harmonic when it denotes an electrostatic potential that varies 
only with x and y in the interior of a region of three-dimensional space that is free of 
charges. 

EXAMPLE 1. It is easy to verify that the function T (x, y) = e - y  sin x is harmonic 
in any domain of the xy plane and, in particular, in the semi-infinite vertical strip 
0 < x < n, y > 0. It also assumes the values on the edges of the strip that are indicated 
in Fig. 31, More precisely, it satisfies all of the conditions 

which describe steady temperatures T ( x ,  y) in a thin homogeneous plate in the xy 
plane that has no heat sources or sinks and is insulated except for the stated conditions 
along the edges. 

I FIGURE 31 

The use of the theory of functions of a complex variable in discovering solutions, 
such as the one in Example 1, of temperature and other problems is described in 
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considerable detail later on in Chap. 10 and in parts of chapters following it.* That 
theory is based on the theorem below, which provides a source of harmonic functions. 

Theorem 1. I f  a function f (z) = u (x , y )  + i v  ( x  , y ) is analytic in a domain D, then 
its component functions u and v  are harmonic in D, 

To show this, we need a result that is to be proved in Chap. 4 (Sec. 48). Namely, 
if a function of a complex variable is analytic at a point, then its real and imaginary 
components have continuous partial derivatives of all orders at that point. 

Assuming that f is analytic in D, we start with the observation that the first- 
order partial derivatives of its component functions must satisfy the Cauchy-Riemann 
equations throughout D: 

Differentiating both sides of these equations with respect to x, we have 

(3) - - uxx - V y x  uyx - -vxx 

Likewise, differentiation with respect to y yields 

Now, by a theorem in advanced ca l c~ lus ,~  the continuity of the partial derivatives of 
u and v  ensures that u,, = u,, and v,, = v X y  I t  then follows from equations (3) and 
(4) that 

uxx + uy ,  = 0 and vxx + v y y  = 0.  

That is, u and v are harmonic in D. 

EXAMPLE 2. The function f (z) = e-y sin x - ie-J' cos x is entire, as is shown 
in Exercise 1 (c) ,  Sec. 24. Hence its real part, which is the temperature function 
T (x , y) = e-y sin x in Example 1, must be harmonic in every domain of the xy plane. 

EXAMPLE 3. Since the function f (z) = i / z 2  is analytic whenever z  # 0 and since 

* Another important method is developed in the authors' "Fourier Series and Boundary Value Problems," 
6th ed., 200 1. 
+See, for instance, A. E. Taylor and W. R. Mann, "Advanced Calculus," 3d ed., pp. 199-201, 1983. 
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the two functions 

x2 - y2 
u(x, Y) = 2xy and v (x ,y )=  

(x2 + y2)2 (x2 + y 2 p  

are harmonic throughout any domain in the xy plane that does not contain the origin. 

If two given functions u and v are harmonic in a domain L) and their first-order 
partial derivatives satisfy the Cauchy-Riemann equations (2) throughout D, v is said 
to be a harmonic conjugate of u. The meaning of the word conjugate here is, of course, 
different from that in Sec. 5, where Z is defined. 

Theorem 2. A function f (2) = u (x, y )  + i v (x, y) is analytic in a domain D if and 
only if v is a harmonic conjugate of u. 

The proof is easy. If v is a harmonic conjugate of u in D, the theorem in Sec. 
21 tells us that f is analytic in D. Conversely, if f is analytic in D, we know from 
Theorem 1 above that u and v are harmonic in D; and, in view of the theorem in Sec. 
20, the Cauchy-Riemann equations are satisfied. 

The following example shows that if v is a harmonic conjugate of u in some 
domain, it is not, in general, true that u is a harmonic conjugate of v there. (See also 
Exercises 3 and 4.) 

EXAMPLE 4. Suppose that 

2 2 u ( x , y ) = x  - y  and u(x,y)=2xy.  

Since these are the real and imaginary components, respectively, of the entire function 
f ( z )  = z2, we know that v is a harmonic conjugate of u throughout the plane. But u 
cannot be a harmonic conjugate of v since, as verified in Exercise 2(b), Sec. 24, the 
function 2xy + i (x2 - y2) is not analytic anywhere. 

In Chap. 9 (Sec. 97) we shall show that a function u which is harmonic in a 
domain of a certain type always has a harmonic conjugate. Thus, in such domains, 
every harmonic function is the real part of an analytic function. It is also true that a 
harmonic conjugate, when it exists, is unique except for an additive constant. 

EXAMPLE 5. We now illustrate one method of obtaining a harmonic conjugate of 
a given harmonic function. The function 
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is readily seen to be harmonic throughout the entire xy plane. Since a harmonic 
conjugate v(x, y) is related to u(x , y) by means of the Cauchy-Riemann equations 

the first of these equations tells us that 

Holding x fixed and integrating each side here with respect to y, we find that 

where # is, at present, an arbitrary function of x.  Using the second of equations (6), 
we have 

or #'(x) = 3x2. Thus $(x) = x3 + C, where C is an arbitrary real number. According 
to equation (71, then, the function 

is a harmonic conjugate of u (x , y) . 
The corresponding analytic function is 

The form f (z) = i (z3 + C) of this function is easily verified and is suggested by noting 
that when y = 0, expression (9) becomes f (x) = i (x3 + C ) .  

EXERCISES 
1. Show that u(x, y) is harmonic in some domain and find a harmonic conjugate v(x, y )  

when 

( a ) ~ [ x ,  y) =2x(1- y); (b) u(x, y) = 2x - x3 + 3xy2; 

(c)  u(x, y) = sinh x sin y; (d) u(x, y) = y/(x2 + y2). 
Ans. (a) v(x, y) = x2 - y2 + 2y ;  (b) V(X, y) = 2y - 3x2y + y3; 

(c)v(x,y)=-coshxcosy; ( ~ ) v ( x , ~ ) = x / ( x ~ + ~ ~ ) .  

2. Show that if v and V are harmonic conjugates of u in a domain D, then v(x, y) and 
V ( x ,  y) can differ at most by an additive constant. 

3. Suppose that, in a domain D, a function v is a harmonic conjugate of u and also that u 
is a harmonic conjugate of v. Show how it follows that both u(x, y) and v(x, y) must be 
constant throughout D . 

4. Use Theorem 2 in Sec. 25 to show that, in a domain D, v is a harmonic conjugate of u 
if and only if -u is a harmonic conjugate of v. (Compare the result obtained in Exer- 
cise 3.) 
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Suggestion: Observe that the function f ( z )  = u(x,  y )  + i v (x ,  y )  is analytic in D 
if and only if -if ( z )  is analytic there. 

5. Let the function f ( z )  = u(r ,  0) + i v(r  , 0 )  be analytic in a domain D that does not 
include the origin. Using the Cauchy-Riemann equations in polar coordinates (Sec. 22) 
and assuming continuity of partial derivatives, show that, throughout D, the function 
u ( r  , 9) satisfies the partial differential equation 

which is the polar form of Laplace S equation. Show that the same is true of the function 
~ ( r ,  0). 

6. Verify that the function u ( r ,  13) = In r is harmonic in the domain r > 0 , 0  < 19 < 2rt by 
showing that it satisfies the polar form of Laplace's equation, obtained in Exercise 5. Then 
use the technique in Example 5, Sec. 25, but involving the Cauchy-Riemann equations 
in polar form (Sec. 22), to derive the harmonic conjugate v ( r ,  0 )  = 0 .  (Compare Exercise 
6, Scc. 24.) 

Let the function f (z) = u ( x ,  y )  + i v (x , y) be analytic in a domain D, and consider the 
families of level curves u(x ,  y)  = cl and v ( x ,  y) = cz, where cl and c2 are arbitrary 
real constants. Prove that these families are orthogonal. More precisely, show that if 
zo = (xo, yo) is a point in D which is common to two particular curves u ( x ,  y)  = cl 
and v(x, y )  = c2 and if f ' ( zo)  # 0, then the lines tangent to those curves at (xo, yo) are 
perpendicular. 

Suggestion: Note how it follows from the equations u (x , y )  = cl and u(x , y )  = cz 
that 

8. Show that when f (z) = z2, the level curves u(x ,  y)  = cl and u(x,  y) = c2 of the compo- 
nent functions are the hyperbolas indicated in Fig. 32. Note the orthogonality of the two 

FIGURE 32 
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families, described in Exercise 7. Observe that the curves u(x ,  y )  = 0 and v(x, y) = 0 
intersect at the origin but are not, however, orthogonal to each other. Why is this fact in 
agreement with the result in Exercise 7? 

9. Sketch the families of level curves of the component functions u and v when f (z) = l/z, 
and note the orthogonality described in Exercise 7. 

10. Do Exercise 9 using polar coordinates. 

11. Sketch the families of level curves of the component functions u and u when 

and note how the result in Exercise 7 is illustrated here. 

26. UNIQUELY DETERMINED ANALYTIC FUNCTIONS 
We conclude this chapter with two sections dealing with how the values of an analytic 
function in a domain D are affected by its values in a subdomain or on a line segment 
lying in D. While these sections are of considerable theoretical interest, they are not 
central to our development of analytic functions in later chapters. The reader may pass 
directly to Chap. 3 at this time and refer back when necessary. 

Lemma. Suppose that 
( i )  a function f is analytic throughout a domain D; 
(ii) f ( z )  = 0 at each point z of a domain or line segment contained in D. 
Then f ( z )  = 0 in D; that is, f (z) is identically equal to zero throughout D. 

To prove this lemma, we let f be as stated in its hypothesis and let zo be any 
point of the subdomain or line segment at each point of which f ( z )  = 0. Since D is a 
connected open set (Sec. lo), there is a polygonal line L, consisting of a finite number 
of line segments joined end to end and lying entirely in D, that extends from zo to any 
other point P in D. We let d be the shortest distance from points on L to the boundary 
of D, unless D is the entire plane; in that case, d may be any positive number. We then 
form a finite sequence of points 

along L, where the point z, coincides with P (Fig. 33) and where each point is 
sufficiently close to the adjacent ones that 
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Finally, we construct a finite sequence of neighborhoods 

where each neighborhood Nk is centered at zk  and has radius d .  Note that these 
neighborhoods are all contained in D and that the center zk of any neighborhood Nk 
(k = 1,2, . . . , n)  lies in the preceding neighborhood Nk- l. 

At this point, we need to use a result that is proved later on in Chap. 6 .  Namely, 
Theorem 3 in Sec. 68 tells us that since f is analytic in the domain No and since 
f (2) = 0 in a domain or on a line segment containing zo, then f ( z )  -- 0 in No. But 
the point z l  lies in the domain No. Hence a second application of the same theorem 
reveals that f ( z )  = 0 in N 1 ;  and, by continuing in this manner, we arrive at the fact 
that f ( 2 )  = 0 in N,. Since N, is centered at the point P and since P was arbitrarily 
selected in D, we may conclude that f (z) = 0 in D. This completes the proof of the 
lemma. 

Suppose now that two functions f and g are analytic in the same domain D and 
that f ( z )  = g(z) at each point z of some domain or line segment contained in D. The 
difference 

is also analytic in D, and h ( z )  = 0 throughout the subdomain or along the line segment. 
According to the above lemma, then, h ( z )  = 0 throughout D; that is, f (z) = g(z) at 
each point z in D. We thus arrive at the following important theorem. 

Theorem. A function that is analytic in a domain D is uniquely determined over D 
by its values in a domain, or along a line segment, contained in D. 

This theorem is useful in studying the question of extending the domain of 
definition of an analytic function. More precisely, given two domains Dl and D2, 
consider the intersection Dl II D2, consisting of all points that lie in both Dl and D2. 
If Dl and D2 have points in common (see Fig. 34) and a function fi  is analytic in Dl ,  
there may exist a function f2, which is analytic in D2, such that f2(z) = fi(z) for each 
z in the intersection Dl f l  D2. If SO, we call f2 an analytic continuation of fi  into the 
second domain D2. 

Whenever that analytic continuation exists, it is unique, according to the theorem 
just proved. That is, not more than one function can be analytic in D2 and assume the 
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FIGURE 34 

value fl(z) at each point z of the domain Dl n D2 interior to D2. However, if there is 
an analytic continuation f3 of f2 from D2 into a domain D3 which intersects Dl, as 
indicated in Fig. 34, it is not necessarily true that f3(z) = f1(z) for each z in Dl n D3. 
Exercise 2, Sec. 27, illustrates this. 

If f2 is the analytic continuation of fi from a domain Dl into a domain D2, then 
the function F defined by the equations 

fi(z) whenzis inD],  
F(z) = f2(z) when z is in R2 

is analytic in the union Dl U D2, which is the domain consisting of all points that lie 
in either Dl or D2. The function F is the analytic continuation into Dl U D2 of either 
fi or f2; and f and f2 are called elements of F. 

27, REFLECTION PRINCIPLE 

The theorem in this section concerns the fact that some analytic functions possess the 
property that f (z) = f ( F )  fox all points z in certain domains, while others do not. We 
note, for example, that z + 1 and z2 have that property when D is the entire finite plane; 
but the same is not true of z + i and iz2.  The theorem, which is known as the refection 
principle, provides a way of predicting when f (z) = f (T).  

Theorem. Suppose that a function f is analytic in some domain D which contains 
a segment of the x axis and whose lower half is the reflection of the upper half with 
respect to that axis. Then 

for eachpoint z in the domain ifand only i f f  (x) is realfor eachpoint x on the segment. 

We start the proof by assuming that f ( x )  is real at each point x on the segment. 
Once we show that the function 



is analytic in D, we shall use it to obtain equation (1). To establish the analyticity of 
F ( z ) ,  we write 

and observe how it follows from equation (2) that, since 

the components of F(z) and f ( z )  are related by the equations 

(4) U(X, y) = u(x, t )  and V(x, y) = -v(x, t), 

where t = - y .  Now, because f (x + i t )  is an analytic function of x + i t ,  the first- 
order partial derivatives of the functions u(x ; t) and v (x, t )  are continuous throughout 
D and satisfy the Cauchy-Riemann equations* 

( 5 )  U, = v,, U t  = -v,. 

Furthermore, in view of equations (4), 

and it follows from these and the first of equations (5) that Ux = V,. Similarly, 

and the second of equations (5) tells us that U,  = -Vx. Inasmuch as the first-order 
partial derivatives of U (x, y) and V(x, y) are now shown to satisfy the Cauchy- 
Riemann equations and since those derivatives are continuous, we find that the function 
F (z) is analytic in D. Moreover, since f (x) is real on the segment of the real axis lying 
in D, v(x, 0) = 0 on that segment; and, in view of equations (4), this means that 

That is, 

at each point on the segment. We now refer to the theorem in Sec. 26, which tells us 
that an analytic function defined on a domain D is uniquely determined by its values 
along any line segment lying in D. Thus equation (6) actually holds throughout D. 

* See the paragraph immediately following Theorem 1 in Sec. 25. 
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Because of definition (2) of the function F ( z ) ,  then, 

(7) f(';i) = f (z); 

and this is the same as equation (1). 
To prove the converse of the theorem, we assume that equation (1) holds and note 

that, in view of expression (3 ) ,  the form (7) of equation (I) can be written 

U(X, - Y )  - iv(x, - y )  = U(X, y) + i v ( x ,  y). 

In particular, if (x, 0) is a point on the segment of the real axis that lies in D, 

and, by equating imaginary parts here, we see that v ( x ,  0) = 0. Hence f ( x )  is real on 
the segment of the real axis lying in D. 

EXAMPLES. Just prior to the statement of the theorem, we noted that 
- 

z+ I = ? +  1 and z 2 = ~ 2  

for all z in the finite plane. The theorem tells us, of course, that this is true, since x + 1 
and x2 are real when x is real. We also noted that z + i and i z2  do not have the reflection 
property throughout the plane, and we now know that this is because x + i  and i x 2  are 
not real when x  is real. 

EXERCISES 

1. Use the theorem in Sec. 26 to show that if f ( z )  is analytic and not constant throughout 
a domain D, then it cannot be constant throughout any neighborhood lying in D. 

Suggestion: Suppose that f (z) does have a constant value wg throughout some 
neighborhood in D. 

2. Starting with the function 

and referring to Exercise 4(b), Sec, 22, point out why 

is an analytic continuation of fi across the negative real axis into the lower half plane. 
Then show that the function 

is an analytic continuation of fi across the positive real axis into the first quadrant but 
that f3(z) = - f i ( ~ )  there. 



3. State why the function 

is the analytic continuation of the function fi(z) in Exercise 2 across the positive real 
axis into the lower half plane, 

4. We know from Example 1, Sec. 2 1, that the function 

has a derivative everywhere in the finite plane. Point out how it follows from the reflection 
principle (Sec. 27) that 

for each z. Then verify this directly. 

5. Show that if the condition that f (x) is real in the reflection principle (Sec. 27) is replaced 
by the condition that f (x) is pure imaginary, then equation (1) in the statement of the 
principle is changed to 


